专栏首页单细胞天地scanpy教程:使用ingest和BBKNN整合多样本

scanpy教程:使用ingest和BBKNN整合多样本

分享是一种态度

作者 | 周运来

男,

一个长大了才会遇到的帅哥,

稳健,潇洒,大方,靠谱。

一段生信缘,一棵技能树,

一枚大型测序工厂的螺丝钉,

一个随机森林中提灯觅食的津门旅客。

回顾

正文

随着单细胞技术的成熟,测序成本的降低,单细胞的数据量和样本量也日益增长。我们知道单细胞转录组的一个主要应用就是解释细胞的异质性,那么,不同器官,不同测序平台,不同物种之间的单细胞数据何如整合分析呢?特别是在单细胞的数据维度这么高的前提下,显然传统的基于回归的方法已经不适用了。于是出现了一批单细胞整合分析的工具,它们大多数是在R生态条件下的。如:

在我们理解单细胞数据的时候一张cell X gene 的大表不能离开我们的脑海。

adata.to_df()
Out[24]: 
                    RP11-34P13.3  FAM138A  ...  AC213203.1  FAM231B
AAACCCAAGCGTATGG-1           0.0      0.0  ...         0.0      0.0
AAACCCAGTCCTACAA-1           0.0      0.0  ...         0.0      0.0
AAACCCATCACCTCAC-1           0.0      0.0  ...         0.0      0.0
AAACGCTAGGGCATGT-1           0.0      0.0  ...         0.0      0.0
AAACGCTGTAGGTACG-1           0.0      0.0  ...         0.0      0.0
                         ...      ...  ...         ...      ...
TTTGTTGCAGGTACGA-1           0.0      0.0  ...         0.0      0.0
TTTGTTGCAGTCTCTC-1           0.0      0.0  ...         0.0      0.0
TTTGTTGGTAATTAGG-1           0.0      0.0  ...         0.0      0.0
TTTGTTGTCCTTGGAA-1           0.0      0.0  ...         0.0      0.0
TTTGTTGTCGCACGAC-1           0.0      0.0  ...         0.0      0.0

当我们有多个样本的时候就是有多张这样的表,那让我们自己手动来整合这两张表的话,我们会怎么做呢?

肯定是行列分别对齐把它们拼在一起啊,就像拼积木一样的,但是这样的结果就是:

两个样本在图谱上完全的分开来了。我们不同平台的样本,相同的细胞类型应该是在一起的啊。于是我们开始思考如何完成这样的整合。

seurat提供了一套解决方案,就是在数据集中构建锚点,将不同数据集中相似的细胞锚在一起。

那么如何锚,选择哪些特征来锚定,又开发出不同的算法。不管算法如何,首先我们看看这种锚定可以为我们带来什么?相同的细胞类型mapping在一起,一个自然的作用就是用来mapping细胞类型未知的数据。

所以在scanpy中也如seurat一样在多样本分析中,分别给出reference的方法和整合的方法。目前在scanpy中分别是ingest和BBKNN(Batch balanced kNN),当然整合也是可以用来做reference的。scanpy.external.pp.mnn_correct(https://scanpy.readthedocs.io/en/latest/external/scanpy.external.pp.mnn_correct.html#scanpy-external-pp-mnn-correct)应该也是可以用的。

先来看ingest,通过投射到参考数据上的PCA(或备用模型)上,将一个adata的嵌入和注释与一个参考数据集adata_ref集成在一起。该函数使用knn分类器来映射标签,使用UMAP来映射嵌入。

再来看看bbknn(https://github.com/Teichlab/bbknn)是一个快速和直观的批处理效果去除工具,可以直接在scanpy工作流中使用。它是scanpy.api.pp.neighbors()的替代方法,这两个函数都创建了一个邻居图,以便后续在集群、伪时间和UMAP可视化中使用。标准方法首先确定整个数据结构中每个单元的k个最近邻,然后将候选单元转换为指数相关的连接,然后作为进一步分析的基础。

那么我们就来看一下在scanpy的实现吧。

import scanpy as sc
import pandas as pd
import seaborn as sns
import sklearn
import sys
import scipy
import bbknn
sc.settings.verbosity = 1             # verbosity: errors (0), warnings (1), info (2), hints (3)
sc.logging.print_versions()
sc.settings.set_figure_params(dpi=80, frameon=False, figsize=(3, 3))
scanpy==1.4.5.1 anndata==0.7.1 umap==0.3.10 numpy==1.16.5 scipy==1.3.1 pandas==0.25.1 scikit-learn==0.21.3 statsmodels==0.10.1 python-igraph==0.8.0

ingest 注释

adata_ref = sc.datasets.pbmc3k_processed()  # this is an earlier version of the dataset from the pbmc3k tutorial

adata_ref
AnnData object with n_obs × n_vars = 2638 × 1838 
    obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain'
    var: 'n_cells'
    uns: 'draw_graph', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups'
    obsm: 'X_pca', 'X_tsne', 'X_umap', 'X_draw_graph_fr'
    varm: 'PCs'

我们一次看看以下参考数据集都有哪些内容:

adata_ref.obs
Out[9]: 
                  n_genes  percent_mito  n_counts          louvain
index                                                             
AAACATACAACCAC-1      781      0.030178    2419.0      CD4 T cells
AAACATTGAGCTAC-1     1352      0.037936    4903.0          B cells
AAACATTGATCAGC-1     1131      0.008897    3147.0      CD4 T cells
AAACCGTGCTTCCG-1      960      0.017431    2639.0  CD14+ Monocytes
AAACCGTGTATGCG-1      522      0.012245     980.0         NK cells
                  ...           ...       ...              ...
TTTCGAACTCTCAT-1     1155      0.021104    3459.0  CD14+ Monocytes
TTTCTACTGAGGCA-1     1227      0.009294    3443.0          B cells
TTTCTACTTCCTCG-1      622      0.021971    1684.0          B cells
TTTGCATGAGAGGC-1      454      0.020548    1022.0          B cells
TTTGCATGCCTCAC-1      724      0.008065    1984.0      CD4 T cells

[2638 rows x 4 columns]
adata_ref.var
Out[10]: 
         n_cells
index           
TNFRSF4      155
CPSF3L       202
ATAD3C         9
C1orf86      501
RER1         608
         ...
ICOSLG        34
SUMO3        570
SLC19A1       31
S100B         94
PRMT2        588

[1838 rows x 1 columns]
adata_ref.uns['louvain_colors']
Out[14]: 
array(['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b',
       '#e377c2', '#bcbd22'], dtype='<U7')

 adata_ref.obsm
Out[16]: AxisArrays with keys: X_pca, X_tsne, X_umap, X_draw_graph_fr

adata_ref.obsm['X_umap']
Out[17]: 
array([[ 1.35285574,  2.26612719],
       [-0.47802448,  7.87730423],
       [ 2.16588875, -0.24481226],
       ...,
       [ 0.34670979,  8.34967798],
       [ 0.19864146,  9.56698797],
       [ 2.62803322,  0.36722543]])

有没有再次理解AnnData 这个对象的数据结构呢?

可以看到在这个数据集中降维聚类都是做过的,我们可以画个图看看:

sc.pl.umap(adata_ref, color='louvain')

接下来我们看看要预测的数据集是怎样的。

adata = sc.datasets.pbmc68k_reduced()
adata

AnnData object with n_obs × n_vars = 700 × 765 
    obs: 'bulk_labels', 'n_genes', 'percent_mito', 'n_counts', 'S_score', 'G2M_score', 'phase', 'louvain'
    var: 'n_counts', 'means', 'dispersions', 'dispersions_norm', 'highly_variable'
    uns: 'bulk_labels_colors', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs'

可见它也是降维聚类过的了。

sc.pl.umap(adata, color='louvain')

这个数据集并没有得到细胞类型的定义。

构建注释数据结构:

var_names = adata_ref.var_names.intersection(adata.var_names) # 取交集
adata_ref = adata_ref[:, var_names]
adata = adata[:, var_names]
sc.pp.pca(adata_ref)
sc.pp.neighbors(adata_ref)
sc.tl.umap(adata_ref)
sc.tl.leiden(adata_ref)# 新的聚类方法
sc.pl.umap(adata_ref, color=['louvain','leiden'])
adata_ref

AnnData object with n_obs × n_vars = 2638 × 208 
    obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain', 'leiden'
    var: 'n_cells'
    uns: 'draw_graph', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups', 'umap', 'leiden', 'leiden_colors'
    obsm: 'X_pca', 'X_tsne', 'X_umap', 'X_draw_graph_fr'
    varm: 'PCs'
sc.pp.pca(adata)
sc.pp.neighbors(adata)
sc.tl.umap(adata)
sc.tl.leiden(adata)
sc.pl.umap(adata, color=['louvain','leiden'])
adata

AnnData object with n_obs × n_vars = 700 × 208 
    obs: 'bulk_labels', 'n_genes', 'percent_mito', 'n_counts', 'S_score', 'G2M_score', 'phase', 'louvain', 'leiden'
    var: 'n_counts', 'means', 'dispersions', 'dispersions_norm', 'highly_variable'
    uns: 'bulk_labels_colors', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups', 'umap', 'leiden', 'leiden_colors'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs'

用ingest来做细胞注释吧。

sc.tl.ingest(adata, adata_ref, obs='louvain')
adata.uns['louvain_colors'] = adata_ref.uns['louvain_colors']  # fix colors

我们来看看sc.tl.ingest的帮助文档:

Help on function ingest in module scanpy.tools._ingest:

ingest(adata: anndata._core.anndata.AnnData, adata_ref: anndata._core.anndata.AnnData, obs: Union[str, Iterable[str], NoneType] = None, embedding_method: Union[str, Iterable[str]] = ('umap', 'pca'), labeling_method: str = 'knn', inplace: bool = True, **kwargs)
    Map labels and embeddings from reference data to new data.

    :tutorial:`integrating-data-using-ingest`

    Integrates embeddings and annotations of an `adata` with a reference dataset
    `adata_ref` through projecting on a PCA (or alternate
    model) that has been fitted on the reference data. The function uses a knn
    classifier for mapping labels and the UMAP package [McInnes18]_ for mapping
    the embeddings.

    .. note::

        We refer to this *asymmetric* dataset integration as *ingesting*
        annotations from reference data to new data. This is different from
        learning a joint representation that integrates both datasets in an
        unbiased way, as CCA (e.g. in Seurat) or a conditional VAE (e.g. in
        scVI) would do.

    You need to run :func:`~scanpy.pp.neighbors` on `adata_ref` before
    passing it.

    Parameters
    ----------
    adata
        The annotated data matrix of shape `n_obs` × `n_vars`. Rows correspond
        to cells and columns to genes. This is the dataset without labels and
        embeddings.
    adata_ref
        The annotated data matrix of shape `n_obs` × `n_vars`. Rows correspond
        to cells and columns to genes.
        Variables (`n_vars` and `var_names`) of `adata_ref` should be the same
        as in `adata`.
        This is the dataset with labels and embeddings
        which need to be mapped to `adata`.
    obs
        Labels' keys in `adata_ref.obs` which need to be mapped to `adata.obs`
        (inferred for observation of `adata`).
    embedding_method
        Embeddings in `adata_ref` which need to be mapped to `adata`.
        The only supported values are 'umap' and 'pca'.
    labeling_method
        The method to map labels in `adata_ref.obs` to `adata.obs`.
        The only supported value is 'knn'.
    inplace
        Only works if `return_joint=False`.
        Add labels and embeddings to the passed `adata` (if `True`)
        or return a copy of `adata` with mapped embeddings and labels.

    Returns
    -------
    * if `inplace=False` returns a copy of `adata`
      with mapped embeddings and labels in `obsm` and `obs` correspondingly
    * if `inplace=True` returns `None` and updates `adata.obsm` and `adata.obs`
      with mapped embeddings and labels

    Example
    -------
    Call sequence:

import scanpy as sc
sc.pp.neighbors(adata_ref)
sc.tl.umap(adata_ref)
sc.tl.ingest(adata, adata_ref, obs='cell_type')

    .. _ingest PBMC tutorial: https://scanpy-tutorials.readthedocs.io/en/latest/integrating-pbmcs-using-ingest.html
    .. _ingest Pancreas tutorial: https://scanpy-tutorials.readthedocs.io/en/latest/integrating-pancreas-using-ingest.html

通过比较‘bulk_label’注释和‘louvain’注释,我们发现数据被合理地映射,只有树突细胞的注释似乎是含糊不清的,在adata中可能已经是模糊的了。我们来对adata做进一步的处理。

adata_concat = adata_ref.concatenate(adata, batch_categories=['ref', 'new'])
adata_concat.obs.louvain  = adata_concat.obs.louvain.astype('category')
adata_concat.obs.louvain.cat.reorder_categories(adata_ref.obs.louvain.cat.categories, inplace=True)  # fix category ordering
adata_concat.uns['louvain_colors'] = adata_ref.uns['louvain_colors']  # fix category colors
adata_concat
sc.pl.umap(adata_concat, color=['batch', 'louvain'])

AnnData object with n_obs × n_vars = 3338 × 208 
    obs: 'G2M_score', 'S_score', 'batch', 'bulk_labels', 'leiden', 'louvain', 'n_counts', 'n_genes', 'percent_mito', 'phase'
    var: 'n_cells-ref', 'n_counts-new', 'means-new', 'dispersions-new', 'dispersions_norm-new', 'highly_variable-new'
    obsm: 'X_pca', 'X_umap'

虽然在单核细胞和树突状细胞簇中似乎存在一些批处理效应,但在其他方面,新数据被绘制得相对均匀。 巨核细胞只存在于adata_ref中,没有来自adata映射的单元格。如果交换参考数据和查询数据,巨核细胞不再作为单独的集群出现。这是一个极端的情况,因为参考数据非常小;但是,人们应该始终质疑参考数据是否包含足够的生物变异,以便有意义地容纳查询数据。

使用BBKNN整合

sc.tl.pca(adata_concat)
sc.external.pp.bbknn(adata_concat, batch_key='batch')  # running bbknn 1.3.6
sc.tl.umap(adata_concat)
sc.pl.umap(adata_concat, color=['batch', 'louvain'])
adata_concat
Out[45]: 
AnnData object with n_obs × n_vars = 3338 × 208 
    obs: 'G2M_score', 'S_score', 'batch', 'bulk_labels', 'leiden', 'louvain', 'n_counts', 'n_genes', 'percent_mito', 'phase'
    var: 'n_cells-ref', 'n_counts-new', 'means-new', 'dispersions-new', 'dispersions_norm-new', 'highly_variable-new'
    uns: 'batch_colors', 'louvain_colors', 'pca', 'neighbors', 'umap'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs'

BBKNN并不维持巨核细胞簇。然而,它似乎更均匀地混合细胞。

一个使用BBKNN整合数据的例子

以下数据已在scGen论文[Lotfollahi19]中使用。点击pancreas(http://ftp//ngs.sanger.ac.uk/production/teichmann/BBKNN/objects-pancreas.zip)下载数据。

它包含了来自4个不同研究(Segerstolpe16, Baron16, Wang16, Muraro16)的人类胰腺数据,这些数据在单细胞数据集集成的开创性论文(Butler18, Haghverdi18)中被使用过,并在此后多次被使用。

h5ad = 'E:\\learnscanpy\\data\\objects-pancreas\\pancreas.h5ad'
adata_all = sc.read_h5ad(h5ad)
adata_all

AnnData object with n_obs × n_vars = 14693 × 2448 
    obs: 'celltype', 'sample', 'n_genes', 'batch', 'n_counts', 'louvain'
    var: 'n_cells-0', 'n_cells-1', 'n_cells-2', 'n_cells-3'
    uns: 'celltype_colors', 'louvain', 'neighbors', 'pca', 'sample_colors'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs'
 counts = adata_all.obs.celltype.value_counts()
counts
Out[173]: 
alpha                     4214
beta                      3354
ductal                    1804
acinar                    1368
not applicable            1154
delta                      917
gamma                      571
endothelial                289
activated_stellate         284
dropped                    178
quiescent_stellate         173
mesenchymal                 80
macrophage                  55
PSC                         54
unclassified endocrine      41
co-expression               39
mast                        32
epsilon                     28
mesenchyme                  27
schwann                     13
t_cell                       7
MHC class II                 5
unclear                      4
unclassified                 2
Name: celltype, dtype: int64
adata_all.obs
Out[171]: 
                              celltype sample  ...      n_counts louvain
index                                          ...                      
human1_lib1.final_cell_0001-0   acinar  Baron  ...  2.241100e+04       2
human1_lib1.final_cell_0002-0   acinar  Baron  ...  2.794900e+04       2
human1_lib1.final_cell_0003-0   acinar  Baron  ...  1.689200e+04       2
human1_lib1.final_cell_0004-0   acinar  Baron  ...  1.929900e+04       2
human1_lib1.final_cell_0005-0   acinar  Baron  ...  1.506700e+04       2
                               ...    ...  ...           ...     ...
reads.29499-3                   ductal   Wang  ...  1.056558e+06      10
reads.29500-3                   ductal   Wang  ...  9.926309e+05      10
reads.29501-3                     beta   Wang  ...  1.751338e+06      10
reads.29502-3                  dropped   Wang  ...  2.163764e+06      10
reads.29503-3                     beta   Wang  ...  2.038979e+06      10

[14693 rows x 6 columns]

可以看出这个数据集已经降维聚类好了,所以我们可以可视化一下:

sc.pl.umap(adata_all,color=['sample', 'celltype','louvain'])

样本之间的批次很严重啊。

去掉细胞数较小的小群,

minority_classes = counts.index[-5:].tolist()        # get the minority classes

# ['schwann', 't_cell', 'MHC class II', 'unclear', 'unclassified']

adata_all = adata_all[                               # actually subset
    ~adata_all.obs.celltype.isin(minority_classes)]
adata_all.obs.celltype.cat.reorder_categories(       # reorder according to abundance
    counts.index[:-5].tolist(), inplace=True)

adata_all.obs.celltype.value_counts()
Out[182]: 
alpha                     4214
beta                      3354
ductal                    1804
acinar                    1368
not applicable            1154
delta                      917
gamma                      571
endothelial                289
activated_stellate         284
dropped                    178
quiescent_stellate         173
mesenchymal                 80
macrophage                  55
PSC                         54
unclassified endocrine      41
co-expression               39
mast                        32
epsilon                     28
mesenchyme                  27

进行pca降维和umap降维:

sc.pp.pca(adata_all)
sc.pp.neighbors(adata_all)
sc.tl.umap(adata_all)
sc.pl.umap(adata_all, color=['batch', 'celltype'], palette=sc.pl.palettes.vega_20_scanpy)

下面我们使用BBKNN来整合数据:

sc.external.pp.bbknn(adata_all, batch_key='batch')
sc.tl.umap(adata_all)
adata_all
sc.pl.umap(adata_all, color=['sample','batch', 'celltype'])

果然要比原始的数据好多了。但是改变的是什么?

AnnData object with n_obs × n_vars = 14662 × 2448 
    obs: 'celltype', 'sample', 'n_genes', 'batch', 'n_counts', 'louvain'
    var: 'n_cells-0', 'n_cells-1', 'n_cells-2', 'n_cells-3'
    uns: 'celltype_colors', 'louvain', 'neighbors', 'pca', 'sample_colors', 'louvain_colors', 'umap', 'batch_colors'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs'

如果想对其中某个样本进行单独的注释,可以用上面提到的ingest。选择一个参考批次来训练模型和建立邻域图(这里是一个PCA),并分离出所有其他批次。

adata_ref = adata_all[adata_all.obs.batch == '0']
adata_ref
Out[191]: 
View of AnnData object with n_obs × n_vars = 8549 × 2448 
    obs: 'celltype', 'sample', 'n_genes', 'batch', 'n_counts', 'louvain'
    var: 'n_cells-0', 'n_cells-1', 'n_cells-2', 'n_cells-3'
    uns: 'celltype_colors', 'louvain', 'neighbors', 'pca', 'sample_colors', 'louvain_colors', 'umap', 'batch_colors'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs'
sc.pp.pca(adata_ref)
sc.pp.neighbors(adata_ref)
sc.tl.umap(adata_ref)

adata_ref
Out[197]: 
AnnData object with n_obs × n_vars = 8549 × 2448 
    obs: 'celltype', 'sample', 'n_genes', 'batch', 'n_counts', 'louvain'
    var: 'n_cells-0', 'n_cells-1', 'n_cells-2', 'n_cells-3'
    uns: 'celltype_colors', 'louvain', 'neighbors', 'pca', 'sample_colors', 'louvain_colors', 'umap', 'batch_colors'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs'

sc.pl.umap(adata_ref, color='celltype')

选取数据集用ingest于adata_ref进行mapping:

adatas = [adata_all[adata_all.obs.batch == i].copy() for i in ['1', '2', '3']]
sc.settings.verbosity = 2  # a bit more logging
for iadata, adata in enumerate(adatas):
    print(f'... integrating batch {iadata+1}')
    adata.obs['celltype_orig'] = adata.obs.celltype  # save the original cell type
    sc.tl.ingest(adata, adata_ref, obs='celltype')

integrating batch 1
running ingest
    finished (0:00:08)
integrating batch 2
running ingest
    finished (0:00:06)
integrating batch 3
running ingest
    finished (0:00:03)

adata_concat = adata_ref.concatenate(adatas)
adata_concat

Out[200]: 
AnnData object with n_obs × n_vars = 14662 × 2448 
    obs: 'batch', 'celltype', 'celltype_orig', 'louvain', 'n_counts', 'n_genes', 'sample'
    var: 'n_cells-0', 'n_cells-1', 'n_cells-2', 'n_cells-3'
    obsm: 'X_pca', 'X_umap'
adata_concat.obs.celltype = adata_concat.obs.celltype.astype('category')
adata_concat.obs.celltype.cat.reorder_categories(adata_ref.obs.celltype.cat.categories, inplace=True)  # fix category ordering
adata_concat.uns['celltype_colors'] = adata_ref.uns['celltype_colors']  # fix category coloring

sc.pl.umap(adata_concat, color=['celltype_orig','batch', 'celltype'])

与BBKNN的结果相比,这是以一种更加明显的方式保持分群。如果已经观察到一个想要的连续结构(例如在造血数据集中),摄取允许容易地维持这个结构。

一致性评估

adata_query = adata_concat[adata_concat.obs.batch.isin(['1', '2', '3'])]

View of AnnData object with n_obs × n_vars = 6113 × 2448 
    obs: 'batch', 'celltype', 'celltype_orig', 'louvain', 'n_counts', 'n_genes', 'sample'
    var: 'n_cells-0', 'n_cells-1', 'n_cells-2', 'n_cells-3'
    uns: 'celltype_colors', 'celltype_orig_colors', 'batch_colors'
    obsm: 'X_pca', 'X_umap'
sc.pl.umap(
    adata_query, color=['batch', 'celltype', 'celltype_orig'], wspace=0.4)

这个结果依然不能很好的反映一致性,让我们首先关注与参考保守的细胞类型,以简化混淆矩阵的reads。

obs_query = adata_query.obs
conserved_categories = obs_query.celltype.cat.categories.intersection(obs_query.celltype_orig.cat.categories)  # intersected categories
obs_query_conserved = obs_query.loc[obs_query.celltype.isin(conserved_categories) & obs_query.celltype_orig.isin(conserved_categories)]  # intersect categories
obs_query_conserved.celltype.cat.remove_unused_categories(inplace=True)  # remove unused categoriyes
obs_query_conserved.celltype_orig.cat.remove_unused_categories(inplace=True)  # remove unused categoriyes
obs_query_conserved.celltype_orig.cat.reorder_categories(obs_query_conserved.celltype.cat.categories, inplace=True)  # fix category ordering

obs_query_conserved
Out[214]: 
                batch     celltype celltype_orig  ...      n_counts  n_genes  sample
D28.1_1-1-1         1        alpha         alpha  ...  2.322583e+04     5448  Muraro
D28.1_13-1-1        1       ductal        ductal  ...  2.334263e+04     5911  Muraro
D28.1_15-1-1        1        alpha         alpha  ...  2.713471e+04     5918  Muraro
D28.1_17-1-1        1        alpha         alpha  ...  1.581207e+04     4522  Muraro
D28.1_2-1-1         1  endothelial   endothelial  ...  3.173151e+04     6464  Muraro
              ...          ...           ...  ...           ...      ...     ...
reads.29498-3-3     3       ductal        ductal  ...  1.362606e+06    19950    Wang
reads.29499-3-3     3       ductal        ductal  ...  1.056558e+06    19950    Wang
reads.29500-3-3     3       ductal        ductal  ...  9.926309e+05    19950    Wang
reads.29501-3-3     3         beta          beta  ...  1.751338e+06    19950    Wang
reads.29503-3-3     3         beta          beta  ...  2.038979e+06    19950    Wang
pd.crosstab(obs_query_conserved.celltype, obs_query_conserved.celltype_orig)
Out[215]: 
celltype_orig  alpha  beta  ductal  acinar  delta  gamma  endothelial  mast
celltype                                                                   
alpha           1819     3       7       0      1     20            0     5
beta              49   803       3       1     10     26            0     0
ductal             8     5     693     263      0      0            0     0
acinar             1     3       2     145      0      3            0     0
delta              5     4       0       0    305     73            0     0
gamma              1     5       0       0      0    194            0     0
endothelial        2     0       0       0      0      0           36     0
mast               0     0       1       0      0      0            0     2

总的来说,保守的细胞类型也如预期的那样被映射。主要的例外是原始注释中出现的一些腺泡细胞。然而,已经观察到参考数据同时具有腺泡和导管细胞,这就解释了差异,并指出了初始注释中潜在的不一致性。

现在让我们继续看看所有的细胞类型。

 pd.crosstab(adata_query.obs.celltype, adata_query.obs.celltype_orig)
Out[216]: 
celltype_orig       PSC  acinar  ...  not applicable  unclassified endocrine
celltype                         ...                                        
alpha                 0       0  ...             304                      11
beta                  0       1  ...             522                      24
ductal                0     263  ...             106                       1
acinar                0     145  ...              86                       0
delta                 0       0  ...              95                       5
gamma                 0       0  ...              14                       0
endothelial           1       0  ...               7                       0
activated_stellate   49       1  ...              17                       0
quiescent_stellate    4       0  ...               1                       0
macrophage            0       0  ...               1                       0
mast                  0       0  ...               1                       0

[11 rows x 16 columns]

我们观察到PSC(胰腺星状细胞)细胞实际上只是不一致地注释并正确地映射到“激活的星状细胞”上。 此外,很高兴看到“间充质”和“间充质”细胞都属于同一类别。但是,这个类别又是“activated_stellate”,而且可能是错误的。这就是我们说的,算法只能接近真相,而不能定义真相。

可视化分布的批次

通常,批量对应的是想要比较的实验。Scanpy提供了方便的可视化可能性,主要有

  • a density plot
  • a partial visualization of a subset of categories/groups in an emnbedding
sc.tl.embedding_density(adata_concat, groupby='batch')
sc.pl.embedding_density(adata_concat, groupby='batch')
for batch in ['1', '2', '3']:
    sc.pl.umap(adata_concat, color='batch', groups=[batch])

References

[1] BBKNN: fast batch alignment of single cell transcriptomes : https://academic.oup.com/bioinformatics/article/36/3/964/5545955 [2] integrating-data-using-ingest : https://scanpy-tutorials.readthedocs.io/en/latest/integrating-data-using-ingest.html

本文分享自微信公众号 - 单细胞天地(sc-ngs),作者:周运来

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-04-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • scanpy教程:PAGA轨迹推断

    如果说单细胞转录组数据分析中的分群是寻找细胞的离散属性,那么轨迹推断就是寻找细胞分化连续性的尝试。为什么细胞的分化既有离散性又有连续性呢?这是一个历史问题,细胞...

    生信技能树jimmy
  • 10X Genomics单细胞免疫组库VDJ分析必知必会

    我们生活着的世界并非只有我们自己,而是有很多小于或大于我们的生物不断与我们交互着,有的让我们开心,有的使我们伤心。这就关系到一个本质的问题:

    生信技能树jimmy
  • 单细胞转录组聚类后的细胞类群如何查找数据库来定义

    Every cell is unique—it occupies an exclusive position in space, carries distinc...

    生信技能树jimmy
  • 数据库驱动企业互联网架构转型

    现今几乎每个大型技术峰会,都离不开互联网金融,企业数字化转型话题。国内外大型云计算独角兽企业,例如阿里云、Amazon、微软Azure等云计算供应商更是提供一站...

    沃趣科技
  • Java8 Lambda表达式详解手册及实例

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...

    用户1161110
  • Java8 Lambda表达式详解手册及实例

    首先看一下发音 ([ˈlæmdə])表达式。注意该词的发音,b是不发音的,da发[də]音。

    用户4172423
  • Java基础12 类型转换与多态

    我们之前使用类创造新的类型(type),并使用继承来便利我们创建类的过程。我将在这一讲中深入类型,并介绍多态(polymorphism)的概念。 类型检查 Ja...

    Vamei
  • 全栈是什么体验?想想都恐怖

    用户2193479
  • R中如何用ifelse进行数据分组

    数据分组,根据数据分析对象的特征,按照一定的数值指标,把数据分析对象划分为不同的区间部分来研究,以揭示内在的联系和规律性; 在R中,我们常用ifelse函数来进...

    Erin
  • 苹果你还装!连Uber CEO都说你真的在研发无人驾驶汽车

    镁客网

扫码关注云+社区

领取腾讯云代金券