前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >高等数学——简单直观地了解定积分

高等数学——简单直观地了解定积分

作者头像
TechFlow-承志
发布2020-04-14 17:06:17
5590
发布2020-04-14 17:06:17
举报
文章被收录于专栏:TechFlowTechFlow

今天是高等数学第11篇文章,我们来看看定积分的相关内容。

对于很多人来说定积分的内容其实早在高中就已经接触过了,比如在高中物理当中,我们经常使用一种叫做”微元法“的方法来解决一些物理问题。但实际上所谓的”微元法“本质上来说其实就是一种微积分计算方法。我们来看两个简单的例子。

微分与积分的例子

第一个例子是扇形的面积计算,先别急着笑,我知道这个是初中的内容。扇形的面积谁不会算,扇形的面积等于圆的面积乘上圆心角嘛。

圆的面积我们都知道,如果是扇形的话,再加上圆心角,我们用弧度制来表示圆心角,可以直接进行计算:。

除此之外还有别的办法吗?

当然是有的,我们来看下面这张图:

在下面这张图当中,我们从扇形上切了一小块出来,做了一个直角三角形。我们令这个直角三角形无限窄,那么它的面积就可以近似于这一块小扇形的面积。

直角三角形的面积很简单,我们都会算,我们令短的直角边长度是l。那么这个小三角形的面积就等于。

我们如此操作,可以把这一块扇形分割成无数个这样的小三角形,最后我们把这些小三角形的面积全部加起来,就可以得到扇形的面积。由于l趋向于0,每一个小三角形和小扇形的面积差的极限都是0,所以可以近似看成它们相等。

这样一番操作之后,我们可以用无数个小三角形的面积来代替扇形的面积。对于这些小三角形而言,它们的面积都是。把它们进行累加,本质上也就是把这些所有的短边进行累加。那么显然,这些所有的短边累加之后的结果就是扇形的弧长

我们假设这块扇形的弧长是L,那么整个扇形的面积还可以表示成。

我们可以简单验证一下,一个完整的圆也可以看成是一个扇形。一个完整的圆,它的弧长,也就是周长是。我们代入刚才的公式,得到的结果和圆的面积公式吻合,所以我们的计算是正确的。

在这个例子当中扇形分割成的每个小三角形是一样的,所以我们可以直接进行累加。如果我们微分之后的结果不再是固定的,是变化的,那么应该怎么办?

我们再来看另外一个例子:

比如我们要求a和b两点围成的曲线矩形的面积,我们也可以将矩形进行拆分。我们可以无限拆分成多个小的矩形的面积去替代。我们可以很容易证明,当趋向于0的时候,那一块小的矩形面积和曲线矩形的面积相等。所以我们可以把它拆分成无数个这样的矩形,然后将所有的面积求和,就得到了曲线围成的面积。

对于每一块矩形而言,它们的宽都是,但是它们的高都不相同。但是很容易看出来,它们的高都是区间里某一个坐标的函数值。其实我们可以写出来这些序列的值,它们分别是: a, a+, a + 2, ..., b。

为了方便书写,我们令这个序列等于

所以曲线围成的面积可以写成:

定积分的定义

我们观察一下上面这个问题,其实我们知道了很多信息,比如我们知道了函数f(x),我们还知道了a和b的值,看起来已经离结果很近了。的确如此,但是在我们继续往下之前,我们必须要明确一点,我们这样的推算是有前提的

最大的也是隐藏的前提就是我们做的划分,我们必须要保证两点,首先我们要保证当趋向于0的时候,矩形高度的极限是确定的。并且这些小矩形的面积和的极限趋近于它真实的面积。

我们用数学的语言来表达,也就是说,我们无论如何选取每一个,我们都要保证是一个定值,这样我们就可以把这个式子写成定积分的形式:

这里的f(x)称作被积函数,称为被积表达式,x叫做积分变量,a和b分别称为积分的上限和下限。

如果f(x)在[a, b]上的定积分存在,那么就称为f(x)在区间[a, b]上可积。

什么样的函数可积呢?

这个问题要用数学的语言证明不太容易,但是如果从直观上去理解则要简单很多。通过上面的图,我们很轻松可以得到结论:连续函数一定可积,并且如果函数在[a, b]上有界并且只有有限个断点也可积。因为有限个间断点不会影响面积的计算,从这个角度入手,是否可积的判断其实还是很好理解的。

我们明白了可导的定义之后,我们再把之前连续和可导这些性质串起来,我们就可以编出高数顺口溜了:

可导一定连续,连续不一定可导。

连续一定可积,可积不一定连续。

可导一般可积,可积不一定可导。

理解并且记住这个顺口溜可是学好高数的基础,不信可以去问问考研党,这几句必然朗朗上口。如果觉得晕头转向也没关系,以后有机会会单独开一篇文章好好讲讲这几个顺口溜。

简单性质

最后,我们来看下定积分的一些简单性质。

第一个是加法性质

这个很好证明,我们只需要将它转化成累加的形式就可以把括号里相加的内容拆开:

另一个经常用到的性质是延续性质,假设f(x)在整个区间上可积,那么我们可以得到:

不论a,b,c之间的大小关系如何,上面的式子都成立。证明方法和刚才一样,我们将积分用累加形式来表示,代入即可。

最后一个性质是保号性,假设f(x)和g(x)在区间[a, b]上可积。并且对于任意x属于[a, b]都有,那么我们可以得到:.

这个证明也很简单,我们令,我们对h(x)进行积分,得到的结果自然大于等于0,再结合刚才的积分的加法性质,我们就可以移项得到结果了。

除了上面提到的三个性质之外,定积分还有很多其他的一些性质。但是这些性质一则比较琐碎,另外也比较直观,值得研究的内容不太多,所以我们不过多涉入,感兴趣的同学可以自行了解。

不知道看了这么多你是不是会有一些问号呢,我们分析了这么多,那么定积分究竟应该怎么计算呢?

这个问题先不着急回答,因为如果你学过微积分的话,那么对于怎么计算积分应该还有一些印象。如果没有的话,直接给出结论并没有什么用,在数学上结论总是需要我们通过严谨的推导的,否则就是空中楼阁,即使记住了,以后也总会忘记的。所以关于定积分的计算推导过程,我们放到下一篇文章当中,敬请期待啦。

今天的文章就是这些,如果觉得有所收获,请顺手点个在看或者转发吧,你们的举手之劳对我来说很重要。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-04-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Coder梁 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 微分与积分的例子
  • 定积分的定义
  • 简单性质
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档