使用线程池,一般会使用JDK提供的几种封装类型,即:newFixedThreadPool、newSingleThreadExecutor、newCachedThreadPool等,这些线程池的定义在Executors类中,来看看相关的源码:
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>(), threadFactory); } public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); }
这些方法内部都使用了ThreadPoolExecutor的构造方法,区别只是传入的参数不同。ThreadPoolExecutor有四个重载的构造方法,最终调用的是由7个参数的构造器,其源码如下:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { //参数校验 if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
参数解释:
ThreadPoolExecutor的核心字段如下:
//ctl低29位表示线程的数量,高3位表示线程池状态,因此当前线程池允许的最大线程数量是2^29-1 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); //固定值29 private static final int COUNT_BITS = Integer.SIZE - 3; //线程最大容量 private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits //线程池的运行时状态,负数表示正在运行,正数表示终止情况 private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS;
线程池的状态有5种,状态之间的转换关系如下图:
初始情况下,线程池创建完毕后会处于RUNNING状态,可以正常的接受新任务;当调用shutdown()时,线程池变成SHUTDOWN状态,此时无法接受新任务,但是会继续执行阻塞队列中的任务;当调用shutdownNow()时,线程由RUNNING状态变成STOP状态,此时不能接受新任务,并且会中断正在执行的任务;当线程池中的线程数减少为0时,就会转成TIDYING状态;在TIDYING状态会自动调用terminated()使线程池转为TERMINATED状态。
shutdown()方法的逻辑分别由5个不同的方法来实现,这里将这些方法整理在一起,如下:
public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { //检查security manager是否允许调用方执行此方法 checkShutdownAccess(); //将线程池状态更新为SHUTDOWN advanceRunState(SHUTDOWN); //中断空闲线程 interruptIdleWorkers(); //这是一个空实现,允许子类进行重写 onShutdown(); // hook for ScheduledThreadPoolExecutor } finally { mainLock.unlock(); } tryTerminate(); } private void advanceRunState(int targetState) { for (;;) { int c = ctl.get(); //如果线程池已经处在targetState及之后的状态则直接结束循环,否则使用CAS操作将线程池状态更新为targetState if (runStateAtLeast(c, targetState) || ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c)))) break; } } private void interruptIdleWorkers() { interruptIdleWorkers(false); } //onlyOne表示是否只终止一个空闲线程 private void interruptIdleWorkers(boolean onlyOne) { final ReentrantLock mainLock = this.mainLock; //加可重入锁 mainLock.lock(); try { for (Worker w : workers) { Thread t = w.thread; //如果线程没有被中断,则尝试获取锁,获取成功后将线程中断 if (!t.isInterrupted() && w.tryLock()) { try { t.interrupt(); } catch (SecurityException ignore) { } finally { //释放锁 w.unlock(); } } if (onlyOne) break; } } finally { mainLock.unlock(); } } final void tryTerminate() { //自旋 for (;;) { int c = ctl.get(); //线程池还在运行,或者已经是TIDYING或TERMINATED状态,或者已经处在`SHUTDOWN`状态但阻塞队列不为空,这几种情况不再继续执行 if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; //线程数不为0时,终止一个空闲线程 if (workerCountOf(c) != 0) { // Eligible to terminate interruptIdleWorkers(ONLY_ONE); return; } final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { //将线程池设置为DIDYING状态 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { //设置成功后,执行terminated()方法 try { //这也是一个空实现,子类可以根据需要进行重写 terminated(); } finally { //将线程池设置为TERMINATED状态 ctl.set(ctlOf(TERMINATED, 0)); termination.signalAll(); } return; } } finally { mainLock.unlock(); } // else retry on failed CAS } }
public List<Runnable> shutdownNow() { List<Runnable> tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { //检查security manager是否允许调用方执行此方法 checkShutdownAccess(); //将线程池状态更新为STOP advanceRunState(STOP); //与shutdown的区别是,这里会中断所有线程,而不仅仅是空闲线程 interruptWorkers(); //将任务从workQueue中移除,转移到一个ArrayList中,此操作后,workQueue为空,已有的任务无法继承执行 tasks = drainQueue(); } finally { mainLock.unlock(); } tryTerminate(); return tasks; } //中断所有线程 private void interruptWorkers() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (Worker w : workers) w.interruptIfStarted(); } finally { mainLock.unlock(); } }
线程池通过execute()方法执行任务,其源码如下:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); //如果当前活跃线程小于核心池大小,就尝试创建新的线程 if (workerCountOf(c) < corePoolSize) { //如果成功创建新线程并且启动成功,直接返回 if (addWorker(command, true)) return; c = ctl.get(); } //线程池处于运行状态,并且成功将任务加入阻塞队列时,会执行下面的代码 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); //如果重复检查时,线程池已经不是运行状态,则将刚添加的任务从阻塞队列中移除,并执行拒绝策略 if (! isRunning(recheck) && remove(command)) reject(command); //如果活跃线程为0,则创建一个非核心线程,并将firstTask设置为null else if (workerCountOf(recheck) == 0) addWorker(null, false); } //如果添加非核心线程失败,则执行拒绝策略 else if (!addWorker(command, false)) reject(command); } //获取活跃的线程数 private static int workerCountOf(int c) { return c & CAPACITY; } //获取线程池运行状态 private static int runStateOf(int c) { return c & ~CAPACITY; }
下图是execute()方法的执行逻辑:
来看看addWorker()方法的实现:
//core表示要创建的是否是核心线程,true表示创建核心线程,false表示创建非核心线程 private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); //获取线程池状态 int rs = runStateOf(c); // Check if queue empty only if necessary. //rs >= SHUTDOWN,表示线程池不再处于RUNNING状态 //rs>=SHUTDOWN,说明已经调用了shutdown()或者shutdownNow()方法,在此条件满足的情况下,第二项条件等同于 //rs!=SHUTDOWN || firstTask != null || workQueue.isEmpty(),满足这三个条件的任何一个都不会再添加新任务 //rs!=SHUTDOWN,说明是STOP、TIDYING、TERMINATE这三种 if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; //执行到这里说明: //① rs<SHUTDOWN,即线程池是运行状态 //② rs=SHUTDOWN,farstTask=null, 并且阻塞队列不为空 for (;;) { int wc = workerCountOf(c); //有三种情况会返回false:1)线程数达到最大值;2)当前创建核心线程,但是线程数已经达到核心池大小; //3)当前创建非核心线程,并且线程数达到最大池大小 if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //如果使用CAS操作成功将ctl的值加1,则跳出最外层循环 if (compareAndIncrementWorkerCount(c)) break retry; //走到这里说明无法使用CAS更新ctl的值,说明此时发生了多线程竞争,需要重新查看线程池的状态 c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { //创建新的Worker线程 w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; //加重入锁 mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { //如果线程t的start()方法已经被执行过,则抛出异常 if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); //workers是个HashSet类型,只在重入锁代码中被访问 workers.add(w); //更新当前活跃线程的最大值 int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { //线程创建成功,则启动线程,内部会调用Worker类的run()方法 t.start(); workerStarted = true; } } } finally { //成功创建新线程时,才会设置workerStarted=true,这里处理没有创建新线程的情况 if (! workerStarted) addWorkerFailed(w); } return workerStarted; }
addWorker() 方法中用到了 Worker 类,这是 ThreadPoolExecutor 的内部类,对线程进行了包装,线程池创建或者启动的线程,实际上都是 Worker 类型的实例,其源码如下(省略了无关代码):
private final class Worker extends AbstractQueuedSynchronizer implements Runnable{ /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; //构造器 Worker(Runnable firstTask) { setState(-1); this.firstTask = firstTask; //注意,这里是将Worker实例传入线程工厂进行构造,因此在调用线程的start()方法时,内部会调用Worker类的run()方法 this.thread = getThreadFactory().newThread(this); } /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); } // .... }
当启动Worker线程时,会通过Thread类的start()方法调用Worker类的runWorker()方法,每一个启动的线程都会在该方法的while循环中不断获取任务去执行,该方法源码如下:
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { //如果能够成功拿到任务,则执行下面的代码块,如果getTask()方法返回null,当前线程就会执行退出逻辑 while (task != null || (task = getTask()) != null) { //如果能将state字段设置为1,表示成功拿到锁,就接着向下执行,否则线程会加入等待队列,不再继续执行 //注意这里是在成功拿到新任务之后才会加锁,结合shutdown()方法的逻辑 w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt //如果线程池正在关闭,需要中断当前线程 if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { //前置钩子 beforeExecute(wt, task); Throwable thrown = null; try { //执行任务 task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { //后置钩子 afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; //释放锁 w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } }
beforeExecute()和afterExecute()是protected类型,并且默认是空实现,很明显是留给子类去实现钩子逻辑。上面的代码使用getTask()从阻塞队列中取任务,其实现如下:
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. //线程池正在关闭,或者阻塞队列空了,就减少线程数,并返回null if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // Are workers subject to culling? //在设置了allowCoreThreadTimeOut参数后,超过给定的时间,会将空闲的核心线程清理掉 //或者线程数量超过了核心池数量,会在一定时间后清理掉多余的线程 boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; //1)线程数量超过最大池数量,或者超时; 2)线程数大于1,或者阻塞队列为空; 这两个条件都成立时,就将ctl值减1 if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { //如果设置了超时状态,则使用poll方法取任务,超过keepAliveTime还没有任务到来就返回true //否则使用take取任务,在阻塞队列为空时会一直等待 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { //线程有可能在等待新任务的到来而阻塞,但是在等待的过程中调用shutdownNow()关闭线程时,线程会抛出中断异常,在这里被捕获 timedOut = false; } } }
现在来整理一下runWorker()方法的思路:每一个新创建的线程都会在runWorker()方法里通过while循环不断地从阻塞队列中获取任务,取到任务之后就执行任务的run()方法,取不到任务就会一直阻塞,或者等待一定的时间之后,空闲线程超时需要回收,就会执行processWorkerExit()方法。
在介绍shutdown()方法时有一个疑问,该方法只会中断空闲线程,但是非空闲的线程不会被中断,即使该线程被阻塞,因此该方法有可能无法关闭那些一直处在等待状态的非空闲线程,这一点在使用时需要注意。在runWorker()方法中,while循环会在成功拿到任务后才会加锁,因此那些由于阻塞队列为空拿不到任务而阻塞的线程也会被shutdown()方法中断
while (task != null || (task = getTask()) != null) { //如果能将state字段设置为1,表示成功拿到锁,就接着向下执行,否则线程会加入等待队列,不再继续执行 //注意这里是在成功拿到新任务之后才会加锁,结合shutdown()方法的逻辑 w.lock(); //忽略其他代码 }
shutdownNow()会中断所有的存活线程,不论这些线程是否空闲,因此可能会导致任务在执行的过程中抛出异常,这点需要注意。
不论是调用哪个方法来关闭线程池,最终线程的退出是要根据getTask()方法来决定。当getTask()方法返回null,即当前阻塞队列已经没有任务时,线程会退出,并且在getTask()方法的自旋代码会首先检查线程池的状态,如下:
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; }
在调用shutdownNow()方法关闭线程池后,rs >= STOP逻辑成立,直接返回null,而shutdown()方法会继续执行阻塞队列中的任务,直到workQueue.isEmpty()条件为真,getTask()返回null导致线程一个个结束,不论是哪种情况,最终线程池中的线程数量都会变成0。
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句