快速上手matplotlib画图

前言

本文是我在学习莫烦老师视频教程时候整理的笔记。Matplotlib是一个python的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。通过Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,散点图等。

a 简单使用

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50)#从(-1,1)均匀取50个点
y = 2 * x

plt.plot(x,y)
plt.show()

▲y = 2x图像

注意:

  1. 如果不使用plo.show()图表是显示不出来的,因为可能你要对图表进行多种的描述,所以通过显式的调用show()可以避免不必要的错误。

b Figure对象

我这里单拿出一个一个的对象,然后后面在进行总结。在matplotlib中,整个图表为一个figure对象。其实对于每一个弹出的小窗口就是一个Figure对象,那么如何在一个代码中创建多个Figure对象,也就是多个小窗口呢?

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50)
y1 = x ** 2 
y2 = x * 2
#这个是第一个figure对象,下面的内容都会在第一个figure中显示
plt.figure()
plt.plot(x,y1)
#这里第二个figure对象
plt.figure(num = 3,figsize = (10,5))
plt.plot(x,y2)
plt.show()

▲多个小窗口

这里需要注意的是:

  1. 我们看上面的每个图像的窗口,可以看出figure并没有从1开始然后到2,这是因为我们在创建第二个figure对象的时候,指定了一个num = 3的参数,所以第二个窗口标题上显示的figure3。
  2. 对于每一个窗口,我们也可以对他们分别去指定窗口的大小。也就是figsize参数。
  3. 若我们想让他们的线有所区别,我们可以用下面语句进行修改
plt.plot(x,y2,color = 'red',linewidth = 3.0,linestyle = '--')

c 设置坐标轴

我们想更改在图表上显示x,y的取值范围:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50)
y = x *2

plt.plot(x,y)
plt.show()

▲默认的横纵坐标

#在plt.show()之前添加
plt.xlim((0,2))
plt.ylim((-2,2))

▲更改横纵坐标的取值范围

给横纵坐标设置名称:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50)
y = x * 2

plt.xlabel("x'slabel")#x轴上的名字
plt.ylabel("y's;abel")#y轴上的名字
plt.plot(x,y,color='green',linewidth = 3)
plt.show()

把坐标轴换成不同的单位:

new_ticks = np.linspace(-1,2,5)
plt.xticks(new_ticks)
#在对应坐标处更换名称
plt.yticks([-2,-1,0,1,2],['really bad','b','c','d','good'])

▲更改后的坐标名称

那么如果我想把坐标轴上的字体更改成数学的那种形式:

#在对应坐标处更换名称
plt.yticks([-2,-1,0,1,2],[r'$really\ bad$',r'$b$',r'$c\ \alpha$','d','good'])

▲将单位改成数学的字体格式

注意:

  1. 我们如果要使用空格的话需要进行对空格的转义"\ "这种转义才能输出空格;
  2. 我们可以在里面加一些数学的公式,如"\alpha"来表示 如何去更换坐标原点,坐标轴呢?我们在plt.show()之前:
#gca = 'get current axis'
#获取当前的这四个轴
ax = plt.gca()
#设置脊梁(也就是包围在图标四周的默认黑线)
#所以设置脊梁的时候,一共有四个方位
ax.spines['right'].set_color('r')
ax.spines['top'].set_color('none')

#将底部脊梁作为x轴
ax.xaxis.set_ticks_position('bottom')
#ACCEPTS:['top' | 'bottom' | 'both'|'default'|'none']

#设置x轴的位置(设置底的时候依据的是y轴)
ax.spines['bottom'].set_position(('data',0))
#the 1st is in 'outward' |'axes' | 'data'
#axes : precentage of y axis
#data : depend on y data

ax.yaxis.set_ticks_position('left')
# #ACCEPTS:['top' | 'bottom' | 'both'|'default'|'none']

#设置左脊梁(y轴)依据的是x轴的0位置
ax.spines['left'].set_position(('data',0))

▲更改坐标轴位置

d legend图例

我们很多时候会在一个figures中去添加多条线,那我们如何去区分多条线呢?这里就用到了legend。

#简单的使用
l1, = plt.plot(x, y1, label='linear line')
l2, = plt.plot(x, y2, color='red', linewidth=1.0, linestyle='--', label='square line')

#简单的设置legend(设置位置)
#位置在右上角
plt.legend(loc = 'upper right')
l1, = plt.plot(x, y1, label='linear line')
l2, = plt.plot(x, y2, color='red', linewidth=1.0, linestyle='--', label='square line')


plt.legend(handles = [l1,l2],labels = ['up','down'],loc = 'best')
#the ',' is very important in here l1, = plt...and l2, = plt...for this step
"""legend( handles=(line1, line2, line3),
           labels=('label1', 'label2', 'label3'),
           'upper right')
    shadow = True 设置图例是否有阴影
    The *loc* location codes are::
          'best' : 0,         
          'upper right'  : 1,
          'upper left'   : 2,
          'lower left'   : 3,
          'lower right'  : 4,
          'right'        : 5,
          'center left'  : 6,
          'center right' : 7,
          'lower center' : 8,
          'upper center' : 9,
          'center'       : 10,"""

这里需要注意的是:

  1. 如果我们没有在legend方法的参数中设置labels,那么就会使用画线的时候,也就是plot方法中的指定的label参数所指定的名称,当然如果都没有的话就会抛出异常;
  2. 其实我们plt.plot的时候返回的是一个线的对象,如果我们想在handle中使用这个对象,就必须在返回的名字的后面加一个","号;
legend = plt.legend(handles = [l1,l2],labels = ['hu','tang'],loc = 'upper center',shadow = True)
frame = legend.get_frame()
frame.set_facecolor('r')#或者0.9...

▲更改后的图例样式

e 在图片上加一些标注annotation

在图片上加注解有两种方式:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-3,3,50)
y = 2*x + 1

plt.figure(num = 1,figsize =(8,5))
plt.plot(x,y)

ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

#将底下的作为x轴
ax.xaxis.set_ticks_position('bottom')
#并且data,以y轴的数据为基本
ax.spines['bottom'].set_position(('data',0))

#将左边的作为y轴
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

print("-----方式一-----")
x0 = 1
y0 = 2*x0 + 1
plt.plot([x0,x0],[0,y0],'k--',linewidth = 2.5)
plt.scatter([x0],[y0],s = 50,color='b')
plt.annotate(r'$2x+1 = %s$'% y0,xy = (x0,y0),xycoords = 'data',
             xytext=(+30,-30),textcoords = 'offset points',fontsize = 16
             ,arrowprops = dict(arrowstyle='->',
                                connectionstyle="arc3,rad=.2"))
plt.show()

▲第一种annotation

plt.annotate(r'$2x+1 = %s$'% y0,xy = (x0,y0),xycoords = 'data',
             xytext=(+30,-30),textcoords = 'offset points',fontsize = 16
             ,arrowprops = dict(arrowstyle='->',
                                connectionstyle="arc3,rad=.2"))

注意:

  1. xy就是需要进行注释的点的横纵坐标;
  2. xycoords = 'data'说明的是要注释点的xy的坐标是以横纵坐标轴为基准的;
  3. xytext=(+30,-30)和textcoords='data'说明了这里的文字是基于标注的点的x坐标的偏移+30以及标注点y坐标-30位置,就是我们要进行注释文字的位置;
  4. fontsize = 16就说明字体的大小;
  5. arrowprops = dict()这个是对于这个箭头的描述,arrowstyle='->'这个是箭头的类型,connectionstyle="arc3,rad=.2"这两个是描述我们的箭头的弧度以及角度的。
print("-----方式二-----")
plt.text(-3.7,3,r'$this\ is\ the\ some\ text. \mu\ \sigma_i\ \alpha_t$',
         fontdict={'size':16,'color':'r'})

▲第一种标注方式

这里先介绍一下plot中的一个参数:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-3,3,50)
y1 = 0.1*x
y2 = x**2

plt.figure()
#zorder控制绘图顺序
plt.plot(x,y1,linewidth = 10,zorder = 2,label = r'$y_1\ =\ 0.1*x$')
plt.plot(x,y2,linewidth = 10,zorder = 1,label = r'$y_2\ =\ x^{2}$')

plt.legend(loc = 'lower right')

plt.show()

如果改成:

#zorder控制绘图顺序
plt.plot(x,y1,linewidth = 10,zorder = 1,label = r'$y_1\ =\ 0.1*x$')
plt.plot(x,y2,linewidth = 10,zorder = 2,label = r'$y_2\ =\ x^{2}$')

下面我们看一下这个图:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-3,3,50)
y1 = 0.1*x
y2 = x**2

plt.figure()
#zorder控制绘图顺序
plt.plot(x,y1,linewidth = 10,zorder = 1,label = r'$y_1\ =\ 0.1*x$')
plt.plot(x,y2,linewidth = 10,zorder = 2,label = r'$y_2\ =\ x^{2}$')

plt.ylim(-2,2)

ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

plt.show()

从上面看,我们可以看见我们轴上的坐标被掩盖住了,那么我们怎么去修改他呢?

print(ax.get_xticklabels())
print(ax.get_yticklabels())

for label in ax.get_xticklabels() + ax.get_yticklabels():
    label.set_fontsize(12)
    label.set_bbox(dict(facecolor = 'white',edgecolor='none',alpha = 0.8,zorder = 2))

<a list of 9 Text xticklabel objects>
<a list of 9 Text yticklabel objects>

▲让坐标轴显示出来

这里需要注意:

  1. ax.get_xticklabels()获取得到就是坐标轴上的数字;
  2. set_bbox()这个bbox就是那坐标轴上的数字的那一小块区域,从结果我们可以很明显的看出来;
  3. facecolor = 'white',edgecolor='none,第一个参数表示的这个box的前面的背景,边上的颜色。

本文分享自微信公众号 - AI机器学习与深度学习算法(AI-KangChen),作者:Chenkc

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-04-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • matplotlib的多图合并

    本文是我在学习莫烦老师视频教程时候整理的笔记。Matplotlib是一个python的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形...

    触摸壹缕阳光
  • 用matplotlib简单绘图

    本文是我在学习莫烦老师视频教程时候整理的笔记。Matplotlib是一个python的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形...

    触摸壹缕阳光
  • 机器学习入门 8-8 模型泛化与岭回归

    本系列是《玩转机器学习教程》一个整理的视频笔记。本小节通过探讨模型过拟合的现象,提出岭回归这个模型正则化方式,最后通过实验对α取值与过拟合(拟合曲线)之间的关系...

    触摸壹缕阳光
  • python学习之matplot

    import matplotlib.pyplot as plt import numpy as np import pandas as pd from mp...

    py3study
  • 带你十分钟快速入门画图神器 Matplotlib

    在开始正式介绍 Matplotlib 用法之前,先来简单了解下 Matplotlib。

    abs_zero
  • 数据分析画图:50道练习玩转matplotlib

    Matplotlib 是 Python 的绘图库。它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案,也可以和图形工具包一起使用。和Pa...

    Datawhale
  • Python数据处理从零开始----第四章(可视化)(2)目录正文

    =========================================================

    用户1359560
  • matplotlib - Pyplot 教程

    matplotlib.pyplot 是命令样式函数的集合,使matplotlib像MATLAB一样工作。 每个pyplot函数对图形进行一些更改:例如,创建图形...

    YINUXY
  • 深度学习数学基础一--最小二乘法

    之前总是先上手一些比较高级的神经网络算法,CNN,RNN等。可是总觉得有些知识原理总是羁绊着我进一步理解。这才意识到基础的重要性。所以,就一点一点的从基础数学最...

    zenRRan
  • python基础之Matplotlib库的使用一(平面图)

    在我们过去的几篇博客中,说到了Numpy的使用,我们可以生成一些数据了,下面我们来看看怎么让这些数据呈现在图画上,让我们更加直观的来分析数据。

    小菜的不能再菜

扫码关注云+社区

领取腾讯云代金券