本期教程主要讲解统计函数中的标准偏差,均方根和方差的计算。
15.1 初学者重要提示
15.2 DSP基础运算指令
15.3 标准偏差(Standard Deviation)
15.4 均方根(RMS)
15.5 方差(Variance)
15.7 实验例程说明(MDK)
15.8 实验例程说明(IAR)
15.9 总结
本章用到的DSP指令在前面章节都已经讲解过。
这部分函数用于计算标准偏差,公式描述如下:
Result = sqrt((sumOfSquares – sum^2 / blockSize) / (blockSize - 1))
其中:
sumOfSquares = pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] * pSrc[blockSize-1]
sum = pSrc[0] + pSrc[1] + pSrc[2] + ... + pSrc[blockSize-1]
函数原型:
void arm_std_f32(
const float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult)
函数描述:
这个函数用于求32位浮点数的标准偏差。
函数参数:
函数原型:
void arm_std_q31(
const q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult)
函数描述:
这个函数用于求32位定点数的标准偏差。
函数参数:
注意事项:
输入参数是1.31格式的,相乘后输出就是1.31*1.31 = 2.62格式,这种情况下,函数内部使用的64位累加器很容易溢出,并且这个函数不支持饱和运算。
函数原型:
void arm_std_q31(
const q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult)
函数描述:
这个函数用于求15位定点数的标准偏差。
函数参数:
注意事项:
输入参数是1.15格式,相乘后的的结果就是1.15*1.15 = 2.30格式,这种情况下,内部64位累加器的的格式就是34.30。最终的输出结果要截取到低15位数据,然后通过饱和运算最终输出数据格式1.15。
程序设计:
/*
*********************************************************************************************************
* 函 数 名: DSP_Std
* 功能说明: 求标准偏差
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void DSP_Std(void)
{
float32_t pSrc[10] = {0.6557f, 0.0357f, 0.8491f, 0.9340f, 0.6787f, 0.7577f, 0.7431f, 0.3922f,
0.6555f, 0.1712f};
float32_t pResult;
uint32_t pIndex;
q31_t pSrc1[10];
q31_t pResult1;
q15_t pSrc2[10];
q15_t pResult2;
arm_std_f32(pSrc, 10, &pResult);
printf("arm_std_f32 : pResult = %f\r\n", pResult);
/*****************************************************************/
for(pIndex = 0; pIndex < 10; pIndex++)
{
pSrc1[pIndex] = rand();
}
arm_std_q31(pSrc1, 10, &pResult1);
printf("arm_std_q31 : pResult = %d\r\n", pResult1);
/*****************************************************************/
for(pIndex = 0; pIndex < 10; pIndex++)
{
pSrc2[pIndex] = rand()%32768;
}
arm_std_q15(pSrc2, 10, &pResult2);
printf("arm_std_q15 : pResult = %d\r\n", pResult2);
printf("******************************************************************\r\n");
}
实验现象:
这部分函数用于计算标准偏差,公式描述如下:
Result = sqrt(((pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] * pSrc[blockSize-1]) / blockSize));
函数原型:
void arm_rms_f32(
const float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult)
函数描述:
这个函数用于求32位浮点数的均方根。
函数参数:
函数原型:
void arm_rms_q31(
const q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult)
函数描述:
这个函数用于求32位定点数的均方根。
函数参数:
注意事项:
输入参数是1.31格式的,相乘后输出就是1.31*1.31 = 2.62格式,这种情况下,函数内部使用的64位累加器很容易溢出,并且这个函数不支持饱和运算。
函数原型:
void arm_rms_q15(
const q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult)
函数描述:
这个函数用于求16位定点数的均方根。
函数参数:
注意事项:
输入参数是1.15格式,相乘后的的结果就是1.15*1.15 = 2.30格式,这种情况下,内部64位累加器的的格式就是34.30。最终的输出结果要截取到低15位数据,然后通过饱和运算最终输出数据格式1.15。
程序设计:
/*
*********************************************************************************************************
* 函 数 名: DSP_RMS
* 功能说明: 求均方根
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void DSP_RMS(void)
{
float32_t pSrc[10] = {0.7060f, 0.0318f, 0.2769f, 0.0462f, 0.0971f, 0.8235f, 0.6948f, 0.3171f,
0.9502f, 0.0344f};
float32_t pResult;
uint32_t pIndex;
q31_t pSrc1[10];
q31_t pResult1;
q15_t pSrc2[10];
q15_t pResult2;
arm_rms_f32(pSrc, 10, &pResult);
printf("arm_rms_f32 : pResult = %f\r\n", pResult);
/*****************************************************************/
for(pIndex = 0; pIndex < 10; pIndex++)
{
pSrc1[pIndex] = rand();
}
arm_rms_q31(pSrc1, 10, &pResult1);
printf("arm_rms_q31 : pResult = %d\r\n", pResult1);
/*****************************************************************/
for(pIndex = 0; pIndex < 10; pIndex++)
{
pSrc2[pIndex] = rand()%32768;
}
arm_rms_q15(pSrc2, 10, &pResult2);
printf("arm_rms_q15 : pResult = %d\r\n", pResult2);
printf("******************************************************************\r\n");
}
实验现象:
这部分函数用于计算标准偏差,公式描述如下:
Result = sqrt(((pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] *
pSrc[blockSize-1]) / blockSize));
函数原型:
void arm_var_f32(
const float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult)
函数描述:
这个函数用于求32位浮点数的方差。
函数参数:
函数原型:
void arm_var_q31(
const q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult)
函数描述:
用于求32位定点数的。
函数参数:
注意事项:
输入参数是1.31格式的,相乘后输出就是1.31*1.31 = 2.62格式,这种情况下,函数内部使用的64位累加器很容易溢出,并且这个函数不支持饱和运算
函数原型:
void arm_var_q15(
const q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult)
函数描述:
用于求16位定点数的方差。
函数参数:
注意事项:
输入参数是1.15格式,相乘后的的结果就是1.15*1.15 = 2.30格式,这种情况下,内部64位累加器的的格式就是34.30。最终的输出结果要截取到低15位数据,然后通过饱和运算最终输出数据格式1.15。
程序设计:
/*
*********************************************************************************************************
* 函 数 名: DSP_Var
* 功能说明: 求方差
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void DSP_Var(void)
{
float32_t pSrc[10] = {0.4387f, 0.3816f, 0.7655f, 0.7952f, 0.1869f, 0.4898f, 0.4456f, 0.6463f,
0.7094f, 0.7547f};
float32_t pResult;
uint32_t pIndex;
q31_t pSrc1[10];
q31_t pResult1;
q15_t pSrc2[10];
q15_t pResult2;
arm_var_f32(pSrc, 10, &pResult);
printf("arm_var_f32 : pResult = %f\r\n", pResult);
/*****************************************************************/
for(pIndex = 0; pIndex < 10; pIndex++)
{
pSrc1[pIndex] = rand();
}
arm_var_q31(pSrc1, 10, &pResult1);
printf("arm_var_q31 : pResult = %d\r\n", pResult1);
/*****************************************************************/
for(pIndex = 0; pIndex < 10; pIndex++)
{
pSrc2[pIndex] = rand()%32768;
}
arm_var_q15(pSrc2, 10, &pResult2);
printf("arm_var_q15 : pResult = %d\r\n", pResult2);
printf("******************************************************************\r\n");
}
实验现象:
在matlab的命令窗口输入如下命令:
a = rand(1,10) %1行10列
然后再通过命令std获得标准偏差:
std(a)
在matlab的命令窗口输入如下命令:
a = rand(1,10) %1行10列
然后再通过命令rms获得均方根。
rms(a)
在matlab的命令窗口输入如下命令:
a = rand(1,10) %1行10列
然后再通过命令var获得方差。
var(a)
配套例子:
V7-210_DSP统计运算(标准偏差,均方根和方差)
实验目的:
实验内容:
使用AC6注意事项
特别注意附件章节C的问题
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
详见本章的3.5 4.5,5.5小节。
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/*
*********************************************************************************************************
* 函 数 名: bsp_Init
* 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
* 形 参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
/* 配置MPU */
MPU_Config();
/* 使能L1 Cache */
CPU_CACHE_Enable();
/*
STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
- 设置NVIV优先级分组为4。
*/
HAL_Init();
/*
配置系统时钟到400MHz
- 切换使用HSE。
- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
*/
SystemClock_Config();
/*
Event Recorder:
- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
- 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章
*/
#if Enable_EventRecorder == 1
/* 初始化EventRecorder并开启 */
EventRecorderInitialize(EventRecordAll, 1U);
EventRecorderStart();
#endif
bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
bsp_InitTimer(); /* 初始化滴答定时器 */
bsp_InitUart(); /* 初始化串口 */
bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */
bsp_InitLed(); /* 初始化LED */
}
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区。
/*
*********************************************************************************************************
* 函 数 名: MPU_Config
* 功能说明: 配置MPU
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* 禁止 MPU */
HAL_MPU_Disable();
/* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x60000000;
MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/*使能 MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/*
*********************************************************************************************************
* 函 数 名: CPU_CACHE_Enable
* 功能说明: 使能L1 Cache
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
/* 使能 I-Cache */
SCB_EnableICache();
/* 使能 D-Cache */
SCB_EnableDCache();
}
主功能:
主程序实现如下操作:
/*
*********************************************************************************************************
* 函 数 名: main
* 功能说明: c程序入口
* 形 参:无
* 返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
uint8_t ucKeyCode; /* 按键代码 */
bsp_Init(); /* 硬件初始化 */
PrintfLogo(); /* 打印例程信息到串口1 */
PrintfHelp(); /* 打印操作提示信息 */
bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */
/* 进入主程序循环体 */
while (1)
{
bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */
/* 判断定时器超时时间 */
if (bsp_CheckTimer(0))
{
/* 每隔100ms 进来一次 */
bsp_LedToggle(2);
}
ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
if (ucKeyCode != KEY_NONE)
{
switch (ucKeyCode)
{
case KEY_DOWN_K1: /* K1键按下,求标准偏差 */
DSP_Std();
break;
case KEY_DOWN_K2: /* K2键按下,求均方根 */
DSP_RMS();
break;
case KEY_DOWN_K3: /* K3键按下,求方差 */
DSP_Var();
break;
default:
/* 其他的键值不处理 */
break;
}
}
}
}
配套例子:
V7-210_DSP统计运算(标准偏差,均方根和方差)
实验目的:
实验内容:
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
详见本章的3.5 4.5,5.5小节。
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/*
*********************************************************************************************************
* 函 数 名: bsp_Init
* 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
* 形 参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
/* 配置MPU */
MPU_Config();
/* 使能L1 Cache */
CPU_CACHE_Enable();
/*
STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
- 设置NVIV优先级分组为4。
*/
HAL_Init();
/*
配置系统时钟到400MHz
- 切换使用HSE。
- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
*/
SystemClock_Config();
/*
Event Recorder:
- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
- 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章
*/
#if Enable_EventRecorder == 1
/* 初始化EventRecorder并开启 */
EventRecorderInitialize(EventRecordAll, 1U);
EventRecorderStart();
#endif
bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
bsp_InitTimer(); /* 初始化滴答定时器 */
bsp_InitUart(); /* 初始化串口 */
bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */
bsp_InitLed(); /* 初始化LED */
}
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区。
/*
*********************************************************************************************************
* 函 数 名: MPU_Config
* 功能说明: 配置MPU
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* 禁止 MPU */
HAL_MPU_Disable();
/* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x60000000;
MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/*使能 MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/*
*********************************************************************************************************
* 函 数 名: CPU_CACHE_Enable
* 功能说明: 使能L1 Cache
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
/* 使能 I-Cache */
SCB_EnableICache();
/* 使能 D-Cache */
SCB_EnableDCache();
}
主功能:
主程序实现如下操作:
/*
*********************************************************************************************************
* 函 数 名: main
* 功能说明: c程序入口
* 形 参:无
* 返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
uint8_t ucKeyCode; /* 按键代码 */
bsp_Init(); /* 硬件初始化 */
PrintfLogo(); /* 打印例程信息到串口1 */
PrintfHelp(); /* 打印操作提示信息 */
bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */
/* 进入主程序循环体 */
while (1)
{
bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */
/* 判断定时器超时时间 */
if (bsp_CheckTimer(0))
{
/* 每隔100ms 进来一次 */
bsp_LedToggle(2);
}
ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
if (ucKeyCode != KEY_NONE)
{
switch (ucKeyCode)
{
case KEY_DOWN_K1: /* K1键按下,求标准偏差 */
DSP_Std();
break;
case KEY_DOWN_K2: /* K2键按下,求均方根 */
DSP_RMS();
break;
case KEY_DOWN_K3: /* K3键按下,求方差 */
DSP_Var();
break;
default:
/* 其他的键值不处理 */
break;
}
}
}
}
本期教程就跟大家讲这么多,有兴趣的可以深入研究这些函数源码的实现。