首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【简单了解系列】从基础的使用来深挖HashMap

【简单了解系列】从基础的使用来深挖HashMap

作者头像
SH的全栈笔记
发布2020-05-07 15:01:33
4110
发布2020-05-07 15:01:33
举报

HashMap定义

说的专业一点,HashMap是常用的用于存储key-value键值对数据的一个集合,底层是基于对Map的接口实现。每一个键值对又叫Entry,这些Entry分散的存储在一个由数组和链表组成的集合中。当然在Java8中,Entry变成了Node

说的通俗一点,就像你去住酒店,你下单提供了你的手机号,然后到酒店了给你一个房卡,你知道了你的房号之后再根据这个房号去找对应的房间一样。 房号就是key,房间里就是value。你通过手机号下单到酒店给你房号可以理解为对key哈希的过程。你找的过程就是HashMap根据key取到对应value的过程

HashMap底层结构

table数组

首先我们要知道,我们存在HashMap中的数据最终是存了什么地方,就是如下的结构。

transient HashMap.Node<K, V>[] table;

可能有人看到transient有些陌生,被这个关键字修饰的变量将不会被序列化。简单来说,就是序列化之后这个字段的值就会被干掉,用于一些不需要传递给第三方的字段。

例如一个矩形,在本地使用的时候,有长、宽和面积三个属性,但是你要把这个对象给第三方用,但是由于面积可以通过另外两个属性推导出来,这个key就不需要传递给第三方了。 这种情况就可以用transient关键字修饰。总的来说就是,被transient修饰的变量将不再参与序列化。

Node节点

下面是Node节点的定义。

static class Node<K, V> implements Entry<K, V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
    
     ......

        public final V getValue() {
            return value;
        }
  
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
  
     ......
    }

上面的代码省略了一些GetterSetter,结构还是非常清晰和简单。可以看到这个节点存储了下一个节点的对象的引用,形成了一个链表的结构。

为什么要用链表?用数组不行吗?刚刚上面提到过,这个集合是由链表和数组组成的。因为再完美的hash算法都有可能产生哈希冲突,所以两个不同key的元素可以被放在同一个地方。

而单用数组明显不能满足这个需求,而在数组的槽位上存一个链表就可以解决这个问题。

HashMap的使用

上面简单了解了HashMap的定义和基本的底层数据结构,接下来通过HashMap在平常开发中的使用来具体看看怎么实现的。

Map<String, String> map = new HashMap<>();

map.put("搜索关注公众号", "SH的全栈笔记"); // 设置值
map.get("搜索关注公众号");               // SH的全栈笔记 

赋值

put函数

上面的Put方法,我们传入了两个参数,Key和Value,函数的定义如下。

public V put(K key, V value) {
 return this.putVal(hash(key), key, value, false, true);
}

应该跟大多数人YY的put方法差不多,put方法再调用了putVal 方法。

首先经过了hash之后的key,是一个整型的hashcode,其次是我们传入的key和value。最后两个布尔值,后面会提到。

首先一进入putVal就会声明存放数据的table,如果这个HashMap是首次设置值,就会被初始化一个默认size的table,且所有元素的初始值都是NULL,下面是初始化这块的核心代码,我省略掉了一些无关的变量声明。

有趣的是,初始化调用的是resize方法。

Node<K,V>[] tab; 
int n;
if ((tab = table) == null || (n = tab.length) == 0) {
  n = (tab = resize()).length;
}

newCap = 16; // 默认容量
newThr = 12; // 默认阈值

默认值为啥是16

上面初始化table的默认size给的是16,当然我们也可以自己定义,但是建议是最好是2的幂。有的朋(杠)友(精)就要问了,为什么是16呢?我13,14不他不香吗?我们接下来就要分析为什么不香。

当我们放元素进入map的时候,它是如何确定元素在table数组中的位置的呢?我们拿搜索关注公众号这个key举例。

hash = (h = key.hashCode()) ^ h >>> 16
p = tab[i = n - 1 & hash]

可以看到,是将hash之后key和数组的length-1做与运算得到了一个数组下标。而且,hash值的二进制的位数,大多数情况下都会比table的长度的二进制位数多。换句话说,与运算之后得到的数组下标index完全取决于hash值的后几位。

16 // n   10000
15 // n-1 1111
14 //     1110
13 //     1101
12 //     1100
11 //     1011
10 //     1010

从13、14的二进制值可以看出来,存在0和1在二进制位数上分布不均匀的情况,这样一来就会造成一个问题,那就是会存在某些不同的hash值经过与运算得到的值是一样的。这样就会导致hash到的index不均匀,换句话说有些index可能永远都不会被hash到,而有些index也被频繁的hash到。

本来hash算法是要求计算的结果要均匀分布的,但是上述的结果明显不符合均匀分布的要求。用n-1而不用n也是因为同样的道理。如果这个值是2的幂,那么2的幂的值-1的所有二进制位数都是1,这样有利于hash计算的均匀分布。

综上所述,不一定是16,2的幂都可以,16只是一个经验值。

自动扩容

除了size,初始化的时候还会设定一个阈值,值为12,newThr = 12,这里需要提到一个概念负载因子,HashMap的实现里默认给的是0.75。

public HashMap() {
  this.loadFactor = 0.75F; // 12/16=0.75
}

负载因子是用来干嘛的呢?最开始我们提到了,最开始存储的数据结构是数组,这种基础结构是有size设定的。当我们不停的往map里存数据的时候,总会存满,当元素快存满的时候,我们就需要扩大map的容量,来容纳更多的元素,这就需要一个自动扩容的机制了。

不是扩容弹匣,想啥呢

在当数据量大于超过设定的阈值的时候(容量*负载因子),自动对map进行扩容,以存放更多的数据。

自动扩容做了什么事情呢?总结来说就是两件事。

  • 创建新的数组,大小是原来数组的一倍。
  • 将元素rehash到新的数组

为什么要rehash呢?上面我们提到过了,当元素被放进map时,确认下标的方法是table的长度-1hash值做与运算,现在table的长度发生了变化,那么自然而然,元素获取下标的运算结果也就跟之前的不一样了, 所以需要将老的map中的元素再按照新的table长度rehash到扩容后的table中。

所以在当你对性能有一定要求,且你知道你创建map的时候size的时候,可以指定size,这样一来就不会因为数据量持续的增大而去频繁的自动扩容了

put的过程中到底发生了什么

了解了底层数据结构自动扩容机制,接下来我们来看一下put过程中究竟发生了什么。我们上面说过了,会通过数组的长度-1hash值与运算得到一个数组下标。

如果该位置没有元素,那么就很简单,直接新建一个节点即可然后放置在数据的具体位置即可。

tab[i] = this.newNode(hash, key, value, (HashMap.Node)null);

但是如果该下标已经有元素了,这种情况HashMap是怎么处理的呢?这也要看情况。

  • 如果是跟当前槽位相同的key,就直接覆盖。这就是我们修改某个key的值会发生的情况。那HashMap怎么来判断是不是同一个key呢?就像下面这样。p就是当前槽位上已经有的元素,如果新、老元素的key的hashCode都相同且key不为空,那么就能证明这两个key是相同的,那么此时只需要覆盖即可。 p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))
  • 而如果p是TreeNode的实例,那么就代表当前槽位已经是一个红黑树了,此时只需要往这个树里putTreeVal即可。至于为什么是红黑树,哪儿来的红黑树,下面马上就要讲到了。
  • 最后一种情况就是,既不是已经存在的元素也不是TreeNode的实例,也不是红黑树。这种情况下,它就是一个普通的Node。你可以理解为链表,如果hash冲突了,就把这个Node放到该位置的链表末尾。Java8之前采用的头插法,而Java8换成了尾插法,至于为什么要换,后面会讲。

当该位置的链表中的元素超过了TREEIFY_THRESHOLD所设置的数量时,就会触发树化,将其转化为红黑树。Java8里给的默认值是8

为啥要转化成红黑树

首先我们要知道为什么要树化。当大量的数据放入Map中,Hash冲突会越来越多,某些位置就会出现一个很长的链表的情况。这种情况下,查询时间复杂度是O(n) ,删除的时间复杂度也是O(n),查询、删除的效率会大大降低。而同样的数据情况下,平衡二叉树的时间复杂度都是O(logn)。

有的朋(杠)友(精)看到这个小标题不乐意了,怎么就直接用红黑树了?我用二叉查找树它不香吗?

不了解二叉查找树的,我把它的特点列在了下面。

  • 左子树上的所有节点的值都小于根节点的值
  • 右子树上的所有节点的值都大于根节点的值

再精简一下就是,左小右大

但是,如果数据大量的趋近于有序,例如所有的节点都比根节点大,那这个时候二叉查找树就退化成了链表,查询效率就会急剧下降。看到这是不是觉得有点不对,我才从链表树化,你这又给我退化成了链表?

朋友看到这又不乐意了,好好好,就算二叉查找树不行,那AVL树它也不行?用了AVL树就不会出现上面所描述的效率急剧退化的情况了不是吗?

的确是这样,AVL也可以叫平衡二叉搜索树。AVL树会在其有退化成链表的趋势的时候(左右子树的高度差超过某个阈值)调整树的结构,也就是通过左旋和右旋来使其左右子树的高度尽量平衡。

OK,OK,就算你解释清楚了为什么要树化,那为什么一定要用红黑树

具体的细节也就不在这里赘述,不知不觉已经写了这么多了,直接说结论吧。AVL树的查找速度更快,但是相应的插入和修改的速度较慢。而红黑树则在插入和修改操作较为密集的时候表现更好。

而总结我们日常的HashMap使用,大多数情况下插入和修改应该是比查找更频繁一些的。而在这种情况下,红黑树的综合表现会更好一些。

至于红黑树的相关细节,涉及的东西还是挺多,我之后会单独拿一个篇幅来讲。

为什么要用尾插法

我们目前用的最多的是Java8,在Java8中采用的是尾插法,Java8之前采用的是头插法。

那为什么后面又变成了尾插法呢?放心,肯定不是设计者闲的蛋疼,没事来改个设计。这样做一定是有一定的道理的。在解释这个问题之前,我们先来看看,如果采取头插法在多线程下的情况下会出现什么问题。

我们讲过,假设数组中index=1的位置已经有了元素A,之后又有元素B被分配到了index=1的位置。那么在下标为1的槽位上的链表就变成了B -> A。

此时再分配了一个新元素C,链表又被更新成了C -> B -> A。这也是为什么叫头插法,新的元素会被放在链表的头节点,因为当时设计的时候考虑到后被放入map的元素被访问的可能性更大。

上面讲到了在当不停的往map中放置元素后,超过了设定的阈值,就会触发自动扩容。此时会触发两个操作,一是创建一个容量为之前两倍的底层数组,并且将老的数组中的元素rehash到新的数组中。

而由于数组的长度发生了变化,这就导致了元素的rehash结果跟之前在老数组中的位置不一样。

首先我们来模拟一下rehash的过程,假设新的数组中下标为2的槽位是空的。

  • 首先元素C,被放置在了其他位置。
  • 然后元素B,被rehash到了下标为2的槽位, 至此都没有问题。
  • 最后元素A,同样被rehash到了下标为2的槽位,此时链表变成了A -> B。到这就有问题了,最开始B的next指向的是A节点。但是rehash之后A的next又指向B,看到这你应该就能明白发生了什么。

我看到很多的对JDK1.7版的HashMap在多线程的情况下扩容会出现死锁的解释都只到了环形链表。但是其实就算是环形链表,只要找到了对应的元素,就会直接退出循环的逻辑,也不会造成死循环。

实际情况是,当自动扩容形成了环形链表后,当你去Get了一个在entry链上不存在的元素时,就会出现死循环的情况。

取值

上面聊了给HashMap赋值的大概过程,接下来聊一下从HashMap获取值会发生什么。get方法的开始,跟put一样很简单。

public V get(Object key) {
  Node<K,V> e;
  return (e = getNode(hash(key), key)) == null ? null : e.value;
}

可以看到,取值的核心操作是getNode来负责完成的。

首先第一件事就是去check的第一个元素是不是当前查找的元素。

如果不是,而且当前槽位已经被树化成了红黑树,就走红黑树的getTreeNode方法。

如果还没有被树化,只是普通的链表,则顺着next一路找下去。

由于get方法逻辑和实现都比较容易理解,就不贴太多源码了。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-04-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 SH的全栈笔记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • HashMap定义
  • HashMap底层结构
    • table数组
      • Node节点
      • HashMap的使用
      • 赋值
        • put函数
          • 默认值为啥是16
            • 自动扩容
              • put的过程中到底发生了什么
                • 为啥要转化成红黑树
                  • 为什么要用尾插法
                  • 取值
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档