前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >three.js中的矩阵变换(模型视图投影变换)

three.js中的矩阵变换(模型视图投影变换)

作者头像
charlee44
发布2020-05-08 15:15:02
5.9K0
发布2020-05-08 15:15:02
举报
文章被收录于专栏:代码编写世界

目录

    1. 概述
    1. 基本变换
    • 2.1. 矩阵运算
    • 2.2. 模型变换矩阵
      • 2.2.1. 平移矩阵
      • 2.2.2. 旋转矩阵
        • 2.2.2.1. 绕X轴旋转矩阵
        • 2.2.2.2. 绕Y轴旋转矩阵
        • 2.2.2.3. 绕Z轴旋转矩阵
    • 2.3. 投影变换矩阵
    • 2.4. 视图变换矩阵
    1. 着色器变换
    • 3.1. 代码
    • 3.2. 解析
    1. 其他

1. 概述

我在《WebGL简易教程(五):图形变换(模型、视图、投影变换)》这篇博文里详细讲解了OpenGL\WebGL关于绘制场景的图形变换过程,并推导了相应的模型变换矩阵、视图变换矩阵以及投影变换矩阵。这里我就通过three.js这个图形引擎,验证一下其推导是否正确,顺便学习下three.js是如何进行图形变换的。

2. 基本变换

2.1. 矩阵运算

three.js已经提供了向量类和矩阵类,定义并且查看一个4阶矩阵类:

代码语言:javascript
复制
var m = new THREE.Matrix4();
m.set(11, 12, 13, 14,
    21, 22, 23, 24,
    31, 32, 33, 34,
    41, 42, 43, 44);
console.log(m);

输出结果:

说明THREE.Matrix4内部是列主序存储的,而我们理论描述的矩阵都为行主序。

2.2. 模型变换矩阵

在场景中新建一个平面:

代码语言:javascript
复制
// create the ground plane
var planeGeometry = new THREE.PlaneGeometry(60, 20);
var planeMaterial = new THREE.MeshBasicMaterial({
    color: 0xAAAAAA
});
var plane = new THREE.Mesh(planeGeometry, planeMaterial);

// add the plane to the scene
scene.add(plane);

three.js中场景节点的基类都是Object3D,Object3D包含了3种矩阵对象:

  1. Object3D.matrix: 相对于其父对象的局部模型变换矩阵。
  2. Object3D.matrixWorld: 对象的全局模型变换矩阵。如果对象没有父对象,则与Object3D.matrix相同。
  3. Object3D.modelViewMatrix: 表示对象相对于相机坐标系的变换。也就是matrixWorld左乘相机的matrixWorldInverse。

2.2.1. 平移矩阵

平移这个mesh:

代码语言:javascript
复制
plane.position.set(15, 8, -10);

根据推导得到平移矩阵为:

[\left \begin{matrix} 1 & 0 & 0 & Tx\ 0 & 1 & 0 & Ty\ 0 & 0 & 1 & Tz\ 0 & 0 & 0 & 1 \end{matrix} \right ]

输出这个Mesh:

2.2.2. 旋转矩阵

2.2.2.1. 绕X轴旋转矩阵

绕X轴旋转:

代码语言:javascript
复制
plane.rotation.x = THREE.Math.degToRad(30);

对应的旋转矩阵:

[\left \begin{matrix} 1 & 0 & 0 & 0\ 0 & cosβ & -sinβ & 0\ 0 & sinβ & cosβ & 0\ 0 & 0 & 0 & 1 \end{matrix} \right ]

输出信息:

2.2.2.2. 绕Y轴旋转矩阵

绕Y轴旋转:

代码语言:javascript
复制
plane.rotation.y = THREE.Math.degToRad(30);

对应的旋转矩阵:

[\left \begin{matrix} cosβ & 0 & sinβ & 0\ 0 & 1 & 0 & 0\ -sinβ & 0 & cosβ & 0\ 0 & 0 & 0 & 1 \end{matrix} \right ]

输出信息:

2.2.2.3. 绕Z轴旋转矩阵

绕Z轴旋转:

代码语言:javascript
复制
plane.rotation.z = THREE.Math.degToRad(30);

对应的旋转矩阵:

[\left \begin{matrix} cosβ & -sinβ & 0 & 0\ sinβ & cosβ & 0 & 0\ 0 & 0 & 1 & 0\ 0 & 0 & 0 & 1 \end{matrix} \right ]

输出信息:

2.3. 投影变换矩阵

在场景中新建一个Camera:

代码语言:javascript
复制
var camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 0.1, 1000);

这里创建了一个透视投影的相机,一般建立的都是对称的透视投影,推导的透视投影矩阵为:

[P= \left \begin{matrix} \frac{1}{aspect*tan⁡(\frac{fovy}{2})} & 0 & 0 & 0 \ 0 & \frac{1}{tan⁡(\frac{fovy}{2})} & 0 & 0 \ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{n-f} \ 0 & 0 & -1 & 0 \ \end{matrix} \right ]

为了验证其推导是否正确,输出这个camera,查看projectionMatrix,也就是透视投影矩阵:

2.4. 视图变换矩阵

通过Camera可以设置视图矩阵:

代码语言:javascript
复制
camera.position.set(0, 0, 100);   //相机的位置
camera.up.set(0, 1, 0);         //相机以哪个方向为上方
camera.lookAt(new THREE.Vector3(1, 2, 3));          //相机看向哪个坐标

根据《WebGL简易教程(五):图形变换(模型、视图、投影变换)》中的描述,可以通过three.js的矩阵运算来推导其视图矩阵:

代码语言:javascript
复制
var eye = new THREE.Vector3(0, 0, 100);
var up = new THREE.Vector3(0, 1, 0);
var at = new THREE.Vector3(1, 2, 3);

var N = new THREE.Vector3();
N.subVectors(eye, at); 
N.normalize();
var U = new THREE.Vector3();
U.crossVectors(up, N);
U.normalize();
var V = new THREE.Vector3();
V.crossVectors(N, U);
V.normalize();

var R = new THREE.Matrix4();
R.set(U.x, U.y, U.z, 0,
    V.x, V.y, V.z, 0,
    N.x, N.y, N.z, 0,
    0, 0, 0, 1);  

var T = new THREE.Matrix4(); 
T.set(1, 0, 0, -eye.x,
    0, 1, 0, -eye.y,
    0, 0, 1, -eye.z,
    0, 0, 0, 1);  

var V = new THREE.Matrix4();
V.multiplyMatrices(R, T);   
console.log(V); 

其推导公式如下:

[V=R^{-1} T^{-1}= \left \begin{matrix} Ux & Uy & Uz & 0 \ Vx & Vy & Vz & 0 \ Nx & Ny & Nz & 0 \ 0 & 0 & 0 & 1 \ \end{matrix} \right * \left \begin{matrix} 1 & 0 & 0 & -Tx \ 0 & 1 & 0 & -Ty\ 0 & 0 & 1 & -Tz\ 0 & 0 & 0 & 1\ \end{matrix} \right = \left \begin{matrix} Ux & Uy & Uz & -U·T \ Vx & Vy & Vz & -V·T \ Nx & Ny & Nz & -N·T \ 0 & 0 & 0 & 1 \ \end{matrix} \right ]

最后输出它们的矩阵值:

两者的计算结果基本时一致的。需要注意的是Camera中表达视图矩阵的成员变量是Camera.matrixWorldInverse。它的逻辑应该是视图矩阵与模型矩阵互为逆矩阵,模型矩阵也可以称为世界矩阵,那么世界矩阵的逆矩阵就是视图矩阵了。

3. 着色器变换

可以通过给着色器传值来验证计算的模型视图投影矩阵(以下称MVP矩阵)是否正确。对于一个任何事情都不做的着色器来说:

代码语言:javascript
复制
vertexShader: ` 
    void main() { 
        gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );      
    }`
,

fragmentShader: `       
    void main() {    
        gl_FragColor = vec4(0.556, 0.0, 0.0, 1.0)                   
    }`

projectionMatrix和modelViewMatrix分别是three.js中内置的投影矩阵和模型视图矩阵。那么可以做一个简单的验证工作,将计算得到的MVP矩阵传入到着色器中,代替这两个矩阵,如果最终得到的值是正确的,那么就说明计算的MVP矩阵是正确的。

3.1. 代码

实例代码如下:

代码语言:javascript
复制
<!DOCTYPE html>
<html>

<head>
    <title>Example 01.01 - Basic skeleton</title>
    <meta charset="UTF-8" />
    <script type="text/javascript" charset="UTF-8" src="../three/three.js"></script>
    <script type="text/javascript" charset="UTF-8" src="../three/controls/TrackballControls.js"></script>
    <script type="text/javascript" charset="UTF-8" src="../three/libs/stats.min.js"></script>
    <script type="text/javascript" charset="UTF-8" src="../three/libs/util.js"></script>
    <script type="text/javascript" src="MatrixDemo.js"></script>
    <link rel="stylesheet" href="../css/default.css">
</head>

<body>
    <!-- Div which will hold the Output -->
    <div id="webgl-output"></div>

    <!-- Javascript code that runs our Three.js examples -->
    <script type="text/javascript">
        (function () {
            // contains the code for the example
            init();
        })();
    </script>
</body>

</html>
代码语言:javascript
复制
'use strict';

THREE.StretchShader = {

    uniforms: {   
        "sw" : {type:'b', value : false},
        "mvpMatrix" : {type:'m4',value:new THREE.Matrix4()}    
    },

    // 
    vertexShader: `    
        uniform mat4 mvpMatrix;
        uniform bool sw;
        void main() { 
            if(sw) {
                gl_Position = mvpMatrix * vec4( position, 1.0 );  
            }else{
                gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); 
            }       
        }`
    ,

    //
    fragmentShader: `   
        uniform bool sw; 
        void main() {    
            if(sw) {
                gl_FragColor = vec4(0.556, 0.0, 0.0, 1.0); 
            }else {
                gl_FragColor = vec4(0.556, 0.8945, 0.9296, 1.0); 
            }                    
        }`
};


function init() {
    //console.log("Using Three.js version: " + THREE.REVISION);   

    // create a scene, that will hold all our elements such as objects, cameras and lights.
    var scene = new THREE.Scene();

    // create a camera, which defines where we're looking at.
    var camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 0.1, 1000);

    // position and point the camera to the center of the scene
    camera.position.set(0, 0, 100);   //相机的位置
    camera.up.set(0, 1, 0);         //相机以哪个方向为上方
    camera.lookAt(new THREE.Vector3(1, 2, 3));          //相机看向哪个坐标
 
    // create a render and set the size
    var renderer = new THREE.WebGLRenderer();
    renderer.setClearColor(new THREE.Color(0x000000));
    renderer.setSize(window.innerWidth, window.innerHeight);

    // add the output of the renderer to the html element
    document.getElementById("webgl-output").appendChild(renderer.domElement);

    
    // create the ground plane
    var planeGeometry = new THREE.PlaneGeometry(60, 20);
    // var planeMaterial = new THREE.MeshBasicMaterial({
    //     color: 0xAAAAAA
    // });

    var planeMaterial = new THREE.ShaderMaterial({
        uniforms: THREE.StretchShader.uniforms,
        vertexShader: THREE.StretchShader.vertexShader,
        fragmentShader: THREE.StretchShader.fragmentShader
    });

    var plane = new THREE.Mesh(planeGeometry, planeMaterial);

    // add the plane to the scene
    scene.add(plane);

    // rotate and position the plane    
    plane.position.set(15, 8, -10);
    plane.rotation.x = THREE.Math.degToRad(30);
    plane.rotation.y = THREE.Math.degToRad(45);
    plane.rotation.z = THREE.Math.degToRad(60);
 
    render();
  
    var farmeCount = 0;
    function render() {    
        
        var mvpMatrix = new THREE.Matrix4(); 
        mvpMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);    
        mvpMatrix.multiplyMatrices(mvpMatrix, plane.matrixWorld);   
        
        THREE.StretchShader.uniforms.mvpMatrix.value = mvpMatrix; 
        if(farmeCount % 60 === 0){
            THREE.StretchShader.uniforms.sw.value = !THREE.StretchShader.uniforms.sw.value;
        }          
        
        farmeCount = requestAnimationFrame(render);
        renderer.render(scene, camera);
    }
   
}

3.2. 解析

这段代码的意思是,给着色器传入了计算好的MVP矩阵变量mvpMatrix,以及一个开关变量sw。开关变量会每60帧变一次,如果为假,会使用内置的projectionMatrix和modelViewMatrix来计算顶点值,此时场景中的物体颜色会显示为蓝色;如果开关变量为真,则会使用传入的计算好的mvpMatrix计算顶点值,此时场景中的物体颜色会显示为红色。运行截图如下:

可以看到场景中的物体的颜色在红色与蓝色之间来回切换,且物体位置没有任何变化,说明我们计算的MVP矩阵是正确的。

4. 其他

在使用JS的console.log()进行打印camera对象的时候,会发现如果不调用render()的话(或者单步调式),其内部的matrix相关的成员变量仍然是初始化的值,得不到想要的结果。而console.log()可以认为是异步的,调用render()之后,就可以得到正确的camera对象了。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-05-04 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 概述
  • 2. 基本变换
    • 2.1. 矩阵运算
      • 2.2. 模型变换矩阵
        • 2.2.1. 平移矩阵
        • 2.2.2. 旋转矩阵
      • 2.3. 投影变换矩阵
        • 2.4. 视图变换矩阵
        • 3. 着色器变换
          • 3.1. 代码
            • 3.2. 解析
            • 4. 其他
            相关产品与服务
            对象存储
            对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档