在前一篇得到面力作用下Q4单元的等效节点力计算公式:
算例
显然,
注意,这里已经是一元函数积分了,是常数1.
同理
如令, 通过python编程可计算
tau = 0
sigma = 1
xi = [0.5773, -0.5773]
eta = [1, 1] # eta的坐标是1
x = [1, 2, 3, 0] # 单元节点的x坐标
y = [0, 0, 1, 1] # 单元节点的y坐标
f3tx = 0
f3ty = 0
f4tx = 0
f4ty = 0
for i in range (2):
N3 = 0.25 * (1 + xi[i]) * ( 1 + eta[i])
N4 = 0.25 * (1 - xi[i]) * ( 1 + eta[i])
J11 = -1*( 1-eta[i]) * x[0] + ( 1-eta[i]) * x[1] + ( 1+eta[i]) * x[2]- ( 1+eta[i]) * x[3]
J11 = 0.25 * J11
J12 = -1*( 1-eta[i]) * y[0] + ( 1-eta[i]) * y[1] + ( 1+eta[i]) * y[2]- ( 1+eta[i]) * y[3]
J12 = 0.25*J12
f3tx = f3tx + N3 *( tau*J11 - sigma * J12 )
f3ty = f3ty + N3 *( sigma*J11 + tau * J12 )
f4tx = f4tx + N4 *( tau*J11 - sigma * J12 )
f4ty = f4ty + N4 *( sigma*J11 + tau * J12 )
print(f3tx,f3ty,f4tx,f4ty)