前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【异常检测】孤立森林(Isolation Forest)算法简介

【异常检测】孤立森林(Isolation Forest)算法简介

作者头像
郭耀华
发布2020-05-21 10:48:04
8.6K0
发布2020-05-21 10:48:04
举报
文章被收录于专栏:郭耀华‘s Blog郭耀华‘s Blog

简介  

  工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记的脏数据,而数据的质量决定了最终模型性能的好坏。如果进行人工二次标记,成本会很高,我们希望能使用一种无监督算法帮我们做这件事,异常检测算法可以在一定程度上解决这个问题。

  异常检测分为离群点检测(outlier detection)以及奇异值检测(novelty detection)两种.

  • 离群点检测:适用于训练数据中包含异常值的情况,例如上述所提及的情况。离群点检测模型会尝试拟合训练数据最集中的区域,而忽略异常数据。
  • 奇异值检测:适用于训练数据不受异常值的污染,目标是去检测新样本是否是异常值。 在这种情况下,异常值也被称为奇异点。

  孤立森林 (Isolation Forest, iForest)是一个基于Ensemble的快速离群点检测方法,具有线性时间复杂度和高精准度,是符合大数据处理要求的State-of-the-art算法。由南京大学周志华教授等人于2008年首次提出,之后又于2012年提出了改进版本。适用于连续数据(Continuous numerical data)的异常检测,与其他异常检测算法通过距离、密度等量化指标来刻画样本间的疏离程度不同,孤立森林算法通过对样本点的孤立来检测异常值。具体来说,该算法利用一种名为孤立树(iTree)的二叉搜索树结构来孤立样本。由于异常值的数量较少且与大部分样本的疏离性,因此,异常值会被更早的孤立出来,也即异常值会距离iTree的根节点更近,而正常值则会距离根节点有更远的距离。此外,相较于LOF,K-means等传统算法,孤立森林算法对高纬数据有较好的鲁棒性。其可以用于网络安全中的攻击检测,金融交易欺诈检测,疾病侦测,和噪声数据过滤等。

  举个例子:

  对于如何查找哪些点是否容易被孤立,iForest使用了一套非常高效的策略。假设我们用一个随机超平面来切割数据空间, 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。上图里面黑色的点就很容易被切几次就停到一个子空间,而白色点聚集的地方可以切很多次才停止。

算法

  怎么来切这个数据空间是iForest的设计核心思想,本文仅介绍最基本的方法。由于切割是随机的,所以需要用Ensemble的方法来得到一个收敛值(蒙特卡洛方法),即反复从头开始切,然后平均每次切的结果。iForest 由 个 iTree 组成,每个 iTree 是一个二叉树结构。该算法大致可以分为两个阶段,第一个阶段我们需要训练出 颗孤立树,组成孤立森林。随后我们将每个样本点带入森林中的每棵孤立树,计算平均高度,之后再计算每个样本点的异常值分数。

  第一阶段,步骤如下:

  (1)从训练数据中随机选择Ψ个点样本点作为样本子集,放入树的根节点。

  (2)随机指定一个维度(特征),在当前节点数据中随机产生一个切割点 p(切割点产生于当前节点数据中指定维度的最大值和最小值之间)。

  (3)以此切割点生成了一个超平面,然后将当前节点数据空间划分为2个子空间:把指定维度里小于 的数据放在当前节点的左子节点,把大于等于 的数据放在当前节点的右子节点。

  (4)在子节点中递归步骤(2)和(3),不断构造新的孩子节点,直到子节点中只有一个数据(无法再继续切割)或子节点已到达限定高度。

  (5)循环(1)至(4),直至生成 个孤立树iTree

  第二阶段:

  获得t个iTree之后,iForest 训练就结束,然后我们可以用生成的iForest来评估测试数据了。对于每一个数据点 xi,令其遍历每一颗孤立树(iTree),计算点 xi 在森林中的平均高度好h(xi),对所有点的平均高度做归一化处理。异常值分数的计算公式如下所示:

  其中

c\left ( \psi \right ) = \left\{\begin{matrix} 2H\left ( \psi - 1 \right ) - 2 \left ( \psi - 1 \right )/\psi, \psi > 2\\ 1, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \psi = 2\\ 0, \quad \quad \quad \quad \quad \quad \quad \quad otherwise \end{matrix}\right.
c\left ( \psi \right ) = \left\{\begin{matrix} 2H\left ( \psi - 1 \right ) - 2 \left ( \psi - 1 \right )/\psi, \psi > 2\\ 1, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \psi = 2\\ 0, \quad \quad \quad \quad \quad \quad \quad \quad otherwise \end{matrix}\right.

H(i) 是调和数,可以通过 ln(i) + 0.5772156649(欧拉常数)来估算。分值越小表示数据越为异常。

示例:

代码语言:javascript
复制
>>> from sklearn.ensemble import IsolationForest
>>> X = [[-1.1], [0.3], [0.5], [100]]
>>> clf = IsolationForest(random_state=0).fit(X)
>>> clf.predict([[0.1], [0], [90]])
array([ 1,  1, -1])

补充:

  1. iForest具有线性时间复杂度。因为是ensemble的方法,所以可以用在含有海量数据的数据集上面。通常树的数量越多,算法越稳定。由于每棵树都是互相独立生成的,因此可以部署在大规模分布式系统上来加速运算。

  2. iForest不适用于特别高维的数据。由于每次切数据空间都是随机选取一个维度,建完树后仍然有大量的维度信息没有被使用,导致算法可靠性降低。高维空间还可能存在大量噪音维度或无关维度(irrelevant attributes),影响树的构建。对这类数据,建议使用子空间异常检测(Subspace Anomaly Detection)技术。此外,切割平面默认是axis-parallel的,也可以随机生成各种角度的切割平面,详见“On Detecting Clustered Anomalies Using SCiForest”。

  3. iForest仅对Global Anomaly敏感,即全局稀疏点敏感,不擅长处理局部的相对稀疏点 (Local Anomaly)。目前已有改进方法发表于PAKDD,详见“Improving iForest with Relative Mass”。

  4. iForest推动了重心估计(Mass Estimation)理论发展,目前在分类聚类和异常检测中都取得显著效果,发表于各大顶级数据挖掘会议和期刊(如SIGKDD,ICDM,ECML)。

参考文章:

孤立森林(Isolation Forest)算法简介

iForest (Isolation Forest)孤立森林 异常检测 入门篇

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation forest."Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. IEEE, 2008.

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation-based anomaly detection."ACM Transactions on Knowledge Discovery from Data (TKDD)6.1 (2012): 3.

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-05-20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简介  
  • 算法
  • 示例:
  • 补充:
  • 参考文章:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档