前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据挖掘从入门到放弃(一):线性回归和逻辑回归

数据挖掘从入门到放弃(一):线性回归和逻辑回归

作者头像
数据社
发布2020-05-25 15:22:09
7000
发布2020-05-25 15:22:09
举报
文章被收录于专栏:数据社数据社

数据挖掘算法基于线性代数、概率论、信息论推导,深入进去还是很有意思的,能够理解数学家、统计学家、计算机学家的智慧,这个专栏从比较简单的常用算法入手,后续研究基于TensorFlow的高级算法,最好能够参与到人脸识别和NLP的实际项目中,做出来一定的效果。

一、理解线性回归模型

首先讲回归模型,回归模型研究的是因变量(目标)和自变量(预测器)之间的关系,因变量可以是连续也可以离散,如果是离散的就是分类问题。思考房价预测模型,我们可以根据房子的大小、户型、位置、南北通透等自变量预测出房子的售价,这是最简单的回归模型,在初中里面回归表达式一般这样写,其中x是自变量,y是因变量,w是特征矩阵,b是偏置。

在机器学习推导里面引入线性代数的思想,将假设我们用一个表达式来描述放假预测模型,x代表一个房子的特征集,它是一个n×1的列向量,总共有m个特征集,θ是一个n×1的列向量,是我们想要求得未知数。

我们采用误差最小的策略,比如有预测表达式:y工资=Θ1*学历+Θ2*工作经验+Θ3*技术能力+.......+Θn*x+基本工资,预测的y值和实际值y_存有差距,策略函数就是使得m个特征集的(真实值y-预测值)的平方和最小。(差值可能是负数,所以采用平方和);

按照对于正规方程的求法,我们对θ 求偏导:

也就是,给定特征矩阵X和因变量y,即可以求使误差率最小的θ值,满足后续的回归模型。了解线性代数的童靴可以看出来问题,在θ的表达式中有求逆运算,需要保证矩阵可逆,这一般是无法保证的,这样就会造成θ无解,策略失效;

二、计算机的做法:梯度下降

常规的方程需要大量的矩阵运算,尤其是矩阵的逆运算,在矩阵很大的情况下,会大大增加计算复杂性。,且正规方程法对矩阵求偏导有一定的局限性(无法保证矩阵可逆),下面介绍梯度下降法,也就是计算机的解决方法,每次走一小步,保证这一小步是最有效的一步,可以想象自己正在下山,你不知道目的地(全局最小值)在哪,但是你能够保证自己每次走的都是最陡峭的一步;

我们的策略仍然保持不变,就是使得m个特征集的(真实值y-预测值)的平方和最小:

梯度下降法实现:赋予初始θ 值,并根据公式逐步更新θ 使得J(θ) 不断减少,最终至收敛,对应的参数θ 即为解。为了推导方便,首先研究只有一个训练样本时,如何计算推导公式。

θ 的每个分量更新公式为:

推广到m个训练数据,参数更新公式为:

三、逻辑回归模型

逻辑回归与线性回归同属广义线性模型,逻辑回归是以线性回归为理论支持,是一个二分类模型,也可以推广多到分类问题,通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题,首先介绍一下Sigmoid函数:

sigmoid函数图像是一个S曲线,取值在[0, 1]之间,在远离0的地方函数的值会很快接近0或者1,sigmoid函数的求导特性是:

逻辑回归的预测函数是下图,只是在特征到结果的映射中加入了一层函数映射,先把特征线性求和,然后使用函数g(z)将最为假设函数来预测。g(z)可以将连续值映射到0到1之间:

通过求似然函数,两边取log后,对θ求偏导:

这样我们就得到了梯度上升每次迭代的更新方向,那么θ的迭代表达式为:

发现同线性回归模型是同一个表达式,这并不仅仅是巧合,两者存在深层的联系;

四、回归模型使用

数据是2014年5月至2015年5月美国King County的房屋销售价格以及房屋的基本信息。数据分为训练数据和测试数据,分别保存在kc_train.csv和kc_test.csv两个文件中,其中训练数据主要包括10000条记录,14个字段:销售日期,销售价格,卧室数,浴室数,房屋面积,停车面积,楼层数,房屋评分,建筑面积,地下室面积,建筑年份,修复年份,纬度,经度。

数据集地址:https://github.com/yezonggang/house_price,按照流程完成模型建立:

代码语言:javascript
复制
import pandas as pd
from pandas import DataFrame
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LinearRegression
# 数据读取
baseUrl="C:\\Users\\71781\\Desktop\\2020\\ML-20200422\\houre_price\\"
house_df=pd.read_csv(baseUrl+'train.csv' )
test_df=pd.read_csv(baseUrl+'test.csv')
house_df.head()

# 删除无关变量
house_df=house_df.drop(['saleTime','year','repairYear','latitude','longitude','buildingSize'],axis=1)
test_df=test_df.drop(['saleTime','year','repairYear','latitude','longitude','buildingSize'],axis=1)

# 模型建立
X_price=house_df.drop(['price'],axis=1)
# X_price.head()
Y_price=house_df['price']
Y_price.head()

LR_reg=LinearRegression()
LR_reg.fit(X_price, Y_price)
Y_pred = LR_reg.predict(test_df)
LR_reg.score(X_price, Y_price)


# 可以选择进行特征缩放
#new_house=house_df.drop(['price'],axis=1)
#from sklearn.preprocessing import MinMaxScaler
#minmax_scaler=MinMaxScaler().fit(new_house)   #进行内部拟合,内部参数会发生变化
#scaler_housing=pd.DataFrame(minmax_scaler.transform(new_house),columns=new_house.columns)

#mm=MinMaxScaler()
#mm.fit(test_df)
#scaler_t=mm.transform(test_df)
#scaler_t=pd.DataFrame(scaler_t,columns=test_df.columns)

内容同步更新在博客:https://blog.csdn.net/yezonggang

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-04-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据社 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
人脸识别
腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于在线娱乐、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档