前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >跟着案例学Netty:Netty内存池泄漏问题

跟着案例学Netty:Netty内存池泄漏问题

作者头像
博文视点Broadview
发布2020-06-10 15:22:20
2.5K1
发布2020-06-10 15:22:20
举报

小编说:Netty是Java高性能网络编程的明星框架,本文选自《Netty进阶之路:跟着案例学Netty》一书,书中内容精选自1000多个一线业务实际案例,真正从原理到实践全景式讲解Netty项目实践

为了提升消息接收和发送性能,Netty针对ByteBuf的申请和释放采用池化技术,通过PooledByteBufAllocator可以创建基于内存池分配的ByteBuf对象,这样就避免了每次消息读写都申请和释放ByteBuf。由于ByteBuf涉及byte[]数组的创建和销毁,对于性能要求苛刻的系统而言,重用ByteBuf带来的性能收益是非常可观的。

内存池是一把双刃剑,如果使用不当,很容易带来内存泄漏和内存非法引用等问题,另外,除了内存池,Netty同时也支持非池化的ByteBuf,多种类型的ByteBuf功能存在一些差异,使用不当很容易带来各种问题。

业务路由分发模块使用Netty作为通信框架,负责协议消息的接入和路由转发,在功能测试时没有发现问题,转性能测试之后,运行一段时间就发现内存分配异常,服务端无法接收请求消息,系统吞吐量降为0。

  • 1 路由转发服务代码

作为案例示例,对业务服务路由转发代码进行简化,以方便分析:

进行一段时间的性能测试之后,日志中出现异常,进程内存不断飙升,怀疑存在内存泄漏问题,如图1所示。

图1 性能测试异常日志

  • 2 响应消息内存释放玄机

对业务ByteBuf申请相关代码进行排查,发现响应消息由业务线程创建,但是却没有主动释放,因此怀疑是响应消息没有释放导致的内存泄漏。因为响应消息使用的是PooledHeapByteBuf,如果发生内存泄漏,利用堆内存监控就可以找到泄漏点,通过Java VisualVM工具观察堆内存占用趋势,并没有发现堆内存发生泄漏,如图2所示。

图2 业务堆内存监控数据

对内存做快照,查看在性能压测过程中响应消息PooledUnsafeHeapByteBuf的实例个数,如图3所示,响应消息对象个数和内存占用都很少,排除内存泄漏嫌疑。

图3 业务堆内存快照

业务从内存池中申请了ByteBuf,但是却没有主动释放它,最后也没有发生内存泄漏,这究竟是什么原因呢?通过对Netty源码的分析,我们破解了其中的玄机。原来调用ctx.writeAndFlush(respMsg)方法时,当消息发送完成,Netty框架会主动帮助应用释放内存,内存的释放分为如下两种场景。

(1)如果是堆内存(PooledHeapByteBuf),则将HeapByteBuffer转换成DirectByteBuffer,并释放PooledHeapByteBuf到内存池,代码如下(AbstractNioChannel类):

如果消息完整地被写到SocketChannel中,则释放DirectByteBuffer,代码如下(ChannelOutboundBuffer):

对Netty源码进行断点调试,验证上述分析。

断点1:在响应消息发送处设置断点,获取到的PooledUnsafeHeapByteBuf实例的ID为1506,如图4所示。

图4 在响应消息发送处设置断点

断点2:在HeapByteBuffer转换成DirectByteBuffer处设置断点,发现实例ID为1506的PooledUnsafeHeapByteBuf被释放,如图5所示。

图5 在响应消息释放处设置断点

断点3:转换之后待发送的响应消息PooledUnsafeDirectByteBuf实例的ID为1527,如图6所示。

图6 在响应消息转换处设置断点

断点4:在响应消息发送完成后,实例ID为1527的PooledUnsafeDirectByteBuf被释放到内存池中,如图7所示。

图7 在转换之后的响应消息释放处设置断点

(2)如果是DirectByteBuffer,则不需要转换,在消息发送完成后,由ChannelOutboundBuffer的remove()负责释放。

通过源码解读、调试及堆内存的监控分析,可以确认不是响应消息没有主动释放导致的内存泄漏,需要Dump内存做进一步定位。

3 采集堆内存快照分析

执行jmap命令,Dump应用内存堆栈,如图8所示。

图8 Dump应用内存堆栈的命令

通过MemoryAnalyzer工具对内存堆栈进行分析,寻找内存泄漏点,如图9所示。

从图9可以看出,内存泄漏点是Netty内存池对象PoolChunk,由于请求和响应消息内存分配都来自PoolChunk,暂时还不确认是请求还是响应消息导致的问题。进一步对代码进行分析,发现响应消息使用的是堆内存HeapByteBuffer,请求消息使用的是DirectByteBuffer,由于Dump出来的是堆内存,如果是堆内存泄漏,Dump出来的内存文件应该包含大量的PooledHeapByteBuf,实际上并没有,因此可以确认系统发生了堆外内存泄漏,即请求消息没有被释放或者没有被及时释放导致的内存泄漏。

图9 寻找内存泄漏点

对请求消息的内存分配进行分析,发现在NioByteUnsafe的read方法中申请了内存,代码如下(NioByteUnsafe):

继续对allocate方法进行分析,发现调用的是DefaultMaxMessagesRecvByteBuf- Allocator$MaxMessageHandle的allocate方法,代码如下(DefaultMaxMessagesRecvByteBuf- Allocator):

alloc.ioBuffer方法最终会调用PooledByteBufAllocator的newDirectBuffer方法创建PooledDirectByteBuf对象。

请求ByteBuf的创建分析完,继续分析它的释放操作,由于业务的RouterServerHandler继承自ChannelInboundHandlerAdapter,它的channelRead(ChannelHandlerContext ctx, Object msg)方法执行完成,ChannelHandler的执行就结束了,代码示例如下:

通过代码分析发现,请求ByteBuf被Netty框架申请后竟然没有被释放,为了验证分析,在业务代码中调用ReferenceCountUtil的release方法进行内存释放操作,代码修改如下:

修改之后继续进行压测,发现系统运行平稳,没有发生OOM异常。对内存活动对象进行排序,没有再发现大量的PoolChunk对象,内存泄漏问题解决,问题修复之后的内存快照如图10所示。

图10 问题修复之后的内存快照

4 ByteBuf申请和释放的理解误区

有一种说法认为Netty框架分配的ByteBuf框架会自动释放,业务不需要释放;业务创建的ByteBuf则需要自己释放,Netty框架不会释放。

通过前面的案例分析和验证,我们可以看出这个观点是错误的。为了在实际项目中更好地管理ByteBuf,下面我们分4种场景进行说明。

1.基于内存池的请求ByteBuf

这类ByteBuf主要包括PooledDirectByteBuf和PooledHeapByteBuf,它由Netty的NioEventLoop线程在处理Channel的读操作时分配,需要在业务ChannelInboundHandler处理完请求消息之后释放(通常在解码之后),它的释放有两种策略。

策略1 业务ChannelInboundHandler继承自SimpleChannelInboundHandler,实现它的抽象方法channelRead0(ChannelHandlerContext ctx, I msg),ByteBuf的释放业务不用关心,由SimpleChannelInboundHandler负责释放,相关代码如下(SimpleChannelInboundHandler):

如果当前业务ChannelInboundHandler需要执行,则调用channelRead0之后执行ReferenceCountUtil.release(msg)释放当前请求消息。如果没有匹配上需要继续执行后续的ChannelInboundHandler,则不释放当前请求消息,调用ctx.fireChannelRead(msg)驱动ChannelPipeline继续执行。

对案例中的问题代码进行修改,继承自SimpleChannelInboundHandler,即便业务不释放请求的ByteBuf对象,依然不会发生内存泄漏,修改之后的代码如下(RouterServerHandlerV2):

对修改之后的代码做性能测试,发现内存占用平稳,无内存泄漏问题,验证了之前的分析结论。

策略2 在业务ChannelInboundHandler中调用ctx.fireChannelRead(msg)方法,让请求消息继续向后执行,直到调用DefaultChannelPipeline的内部类TailContext,由它来负责释放请求消息,代码如下(TailContext):

2.基于非内存池的请求ByteBuf

如果业务使用非内存池模式覆盖Netty默认的内存池模式创建请求ByteBuf,例如通过如下代码修改内存申请策略为Unpooled:

也需要按照内存池的方式释放内存。

3.基于内存池的响应ByteBuf

根据之前的分析,只要调用了writeAndFlush或者flush方法,在消息发送完成后都会由Netty框架进行内存释放,业务不需要主动释放内存。

4.基于非内存池的响应ByteBuf

无论是基于内存池还是非内存池分配的ByteBuf,如果是堆内存,则将堆内存转换成堆外内存,然后释放HeapByteBuffer,待消息发送完成,再释放转换后的DirectByteBuf;如果是DirectByteBuffer,则不需要转换,待消息发送完成之后释放。因此对于需要发送的响应ByteBuf,由业务创建,但是不需要由业务来释放。

本文选自《Netty进阶之路:跟着案例学Netty》一书,作者李林锋 ,在书中“Netty内存池泄漏疑云案例”分析中,更详细介绍了ByteBuf的申请和释放策略,以及Netty 内存池的工作原理。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-11-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 博文视点Broadview 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云代码分析
腾讯云代码分析(内部代号CodeDog)是集众多代码分析工具的云原生、分布式、高性能的代码综合分析跟踪管理平台,其主要功能是持续跟踪分析代码,观测项目代码质量,支撑团队传承代码文化。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档