在使用Pytorch时经常碰见这些函数cross_entropy,CrossEntropyLoss, log_softmax, softmax。看得我头大,所以整理本文以备日后查阅。
首先要知道上面提到的这些函数一部分是来自于torch.nn,而另一部分则来自于torch.nn.functional(常缩写为F)。二者函数的区别可参见 知乎:torch.nn和funtional函数区别是什么?
下面是对与cross entropy有关的函数做的总结:
torch.nn | torch.nn.functional (F) |
---|---|
CrossEntropyLoss | cross_entropy |
LogSoftmax | log_softmax |
NLLLoss | nll_loss |
下面将主要介绍torch.nn.functional中的函数为主,torch.nn中对应的函数其实就是对F里的函数进行包装以便管理变量等操作。
在介绍cross_entropy之前先介绍两个基本函数:
这个很好理解,其实就是log和softmax合并在一起执行。
该函数的全程是negative log likelihood loss,函数表达式为
\[f(x,class)=-x[class] \]
例如假设
,那额
交叉熵的计算公式为:
\[cross\_entropy=-\sum_{k=1}^{N}\left(p_{k} * \log q_{k}\right) \]
其中
表示真实值,在这个公式中是one-hot形式;
是预测值,在这里假设已经是经过softmax后的结果了。
代码示例
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randint(5, (3,), dtype=torch.int64)
>>> loss = F.cross_entropy(input, target)
>>> loss.backward()