前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【NLP】ACL20 基于对话图谱的开放域多轮对话策略学习

【NLP】ACL20 基于对话图谱的开放域多轮对话策略学习

作者头像
yuquanle
发布2020-07-01 16:09:01
8610
发布2020-07-01 16:09:01
举报
文章被收录于专栏:AI小白入门AI小白入门

论文名称:Conversational Graph Grounded Policy Learning for Open-Domain Conversation Generation 论文作者:徐俊,王海峰,牛正雨,吴华,车万翔,刘挺 原创作者:哈工大 SCIR 博士生 徐俊 转载须注明出处:哈工大SCIR

1 简介

论文中提出用图的形式捕捉对话转移规律作为先验信息,用于辅助开放域多轮对话策略学习。为此,研究人员首先从对话语料库中构建了一个对话图谱(Conversational Graph),其中节点表示“What to say”和“How to say”,边表示当前句(对话上文中的最后一个语句)与其回复句之间的自然转换。然后,论文中提出了一个基于对话图的策略学习框架,该框架通过图遍历进行对话流规划,学习在每轮从对话图中识别出一个“What”节点和“How”节点来指导回复生成。

这样可以有效地利用对话图谱来促进策略学习,具体如下:

• 可以实现更有效的长期奖励设计;

• 提供高质量的候选操作;

• 让我们对策略有更多的控制。在两个基准语料库的实验结果表明了帮了我了所提框架的有效性;

2 方法

论文中提出了基于对话图谱(CG)的开放域多轮对话策略模型。其中,对话图谱用来捕捉对话中的局部合适度以及全局连贯度信息。直观上,策略模型以图中的What节点 (关键词)作为可解释的离散状态,进而模型得以主动规划对话内容,进而提升多轮连贯度和可控性

图1是本文方法的框架图,实线椭圆代表“What”节点,实线圆形代表“How”节点。对于当前句(图中Message),策略模型首先将其定位到图中的“What”节点(图中绿色关键词),进而主动规划要聊的内容(图中橙红色的两个节点),再经由生成模型产出回复句(图中Response)。

图1 基于对话图谱的开放域多轮对话策略模型

对话图谱的构建主要包含点(What-节点和How-节点)的构建,以及边的建设两部分。首先,研究人员从对话语料中抽取关键词作为What-节点,关键词使用开源的基于词性等特征的工具抽取,分别挖掘语料上下句中的关键词,组成关键词对,再基于共现频率在What-节点之间建边。

同What-节点直接表达“说什么”不同,How-节点代表“怎么说”,这类节点无法直接从语料中抽取。研究人员基于MMPMS[1]模型学习到的表达方式(隐变量)为How节点集合,再统计What-节点经常使用哪些How-节点解码(表达出来),基于共现频率建边。

抽取工具地址:

http://github.com/squareRoot3/Target-Guided-Conversation

策略模型首先基于映射来做对话理解,根据对话当前句中出现的关键词映射到对话图中的What-节点,召回全部What-节点的所有一阶What-节点邻居提供给Policy;之后,Policy选择其中一个What-节点确定回复内容,再选择该What-节点的一个How-节点,确定回复方式;NLG负责生成具体回复句。论文中将基于对话图谱的策略模型称之为CG-Policy。

为了训练CG-Policy,我们设计了多种来源的奖励信号:

  • 基于句子的奖励
    • 句间相关度:我们使用对话下的多轮检索模型[2]为每轮生成的回复句进行相关度打分;
    • 句间重复惩罚:我们鼓励多样的内容规划生成,当有超过60%的生成的回复句中的词语在上文中任意一句中同时出现,则判定为重复;
  • 基于图结构的奖励
    • 全局连贯度:TransE空间下选中/提及What节点间的平均cosine距离;
    • 可持续性:我们鼓励主动聊内容丰富的节点,这样未来可聊的内容会相对更对,具体而言我们使用PageRank打分;

此外,CG-Policy可控性也很好(如要求聊到特定的对话目标节点上),但需要设计相应的奖励函数。具体而言,我们增加了下面的奖励函数:

  • 可控性奖励
    • 目标相似度:选定What节点和目标节点在语义空间的cosine距离,该距离表征当前到目标还是多远;
    • 到目标节点的图上最短距离;

3 实验设置

我们在常用的公开数据集Weibo[3]和Persona[4]上开展实验。对于基线模型,我们选用下述三个代表性模型。

• LaRL[5]:SOTA 基于隐变量的强化学习对话模型

• ChatMore[6]:关键词增强的生成式对话模型

• TGRM[7]:关键词增强的检索式对话模型

我们在训练LaRL、CG-Policy(本文所提模型)使用MMPMS模型[1]作为用户模拟器,用户模拟器在策略学习过程中参数不变。此外,在机机对话时,所有模型共享该用户模拟器。

为了综合评估模型的效果,我们在多轮和单轮两个层面从以下几个维度分别进行评估:

  • 多轮评估指标
    • 全局连贯度(Cohe.)
    • 多样性 (Dist-2)
  • 单轮评估指标
    • 适合度 (Appr.),信息丰富度 (Info.)

4. 实验结果

首先,我们在微博语料下分别进行机机、人机实验,从微博语料中抽取构建的对话图谱含有4000个What-节点和10个How-节点,What-节点之间有74,362条边,其中有64%的边经过人工评估表明捕捉了合适的对话转移规律。如表1所示,结果表明CG-Policy在多轮连贯性上显著超越基线。

表格1:微博语料下机机和人机对话实验结果

其次,为了说明CG-Policy中CG的价值、CG如何起作用以及How节点的价值,我们进行了消融实验。实验设置和结果如表2所示。

表格2:消融实验

此外,为了证明所模型有助于提升多轮对话可控性,我们进行引导到特定目标的实验[7],按照任务设定,我们在Persona语料上进行实验。实验结果如表3所示,表明CG-Policy具有更好的可控性,对话成功率相对基线大幅提升。

表格3:可控性实验

5 对话样例

图2 人机对话样例(使用中文对话,翻译成英文)

6 结论

我们提出用对话图谱的形式捕捉对话转移规律作为先验信息,以图中“What-vertex” (关键词)作为可解释的离散状态,用于辅助开放域多轮对话策略学习,生成更加连贯和可控的多轮对话。

实验结果表明所提框架可以取得更好的局部合适度、全局连贯度和给定话题的到达成功率。

参考文献

[1]. Chaotao Chen, Jinhua Peng, Fan Wang, Jun Xu, and Hua Wu. 2019. Generating multiple diverse responses with multi-mapping and posterior mapping selection. Proceedings of IJCAI.

[2]. Antoine Bordes, Nicolas Usunier, Alberto GarciaDuran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multirelational data. In Advances in neural information processing systems, pages 2787–2795.

[3]. Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. In Proceedings of ACL-IJCNLP, volume 1, pages 1577–1586.

[4]. Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. 2018a. Personalizing dialogue agents: I have a dog, do you have pets too? In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 22042213.

[5]. Zhao, T.; Xie,K.; and Eskenazi, M. 2019. Rethinking action spaces for reinforcement learning in end-to-end dialog agents with latent variable models. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long andShort Papers), 12081218.

[6]. Lili Yao, Ruijian Xu, Chao Li, Dongyan Zhao, and Rui Yan. 2018. Chat more if you like: Dynamic cue words planning to flow longer conversations. arXiv preprint arXiv:1811.07631.

[7]. Jianheng Tang, Tiancheng Zhao, Chenyan Xiong, Xiaodan Liang, Eric P. Xing, and Zhiting Hu. 2019. Target-guided open-domain conversation. In Proceedings of ACL.

延伸阅读

本期责任编辑:张伟男

本期编辑:王若珂

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-06-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI小白入门 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 简介
  • 2 方法
  • 3 实验设置
  • 4. 实验结果
  • 5 对话样例
  • 6 结论
  • 参考文献
  • 延伸阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档