前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ShuffleNetV1/V2简述 | 轻量级网络

ShuffleNetV1/V2简述 | 轻量级网络

原创
作者头像
VincentLee
修改2020-07-06 10:54:15
8300
修改2020-07-06 10:54:15
举报

ShuffleNet系列是轻量级网络中很重要的一个系列,ShuffleNetV1提出了channel shuffle操作,使得网络可以尽情地使用分组卷积来加速,而ShuffleNetV2则推倒V1的大部分设计,从实际出发,提出channel split操作,在加速网络的同时进行了特征重用,达到了很好的效果undefined来源:晓飞的算法工程笔记 公众号

ShuffleNet V1


论文: ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Introduction

  神经网络的精度越来越高,而推理性能也在逐渐变慢,在实际应用中不得不在性能与准确率间进行折中。为此,论文对小网络的耗时进行分析,提出了ShuffleNet。论文首先介绍了ShuffleNet的核心操作Channel Shuffle以及Group Convolutions,然后再介绍Shuffle unit的结构,最后介绍ShuffleNet的架构。

Channel Shuffle for Group Convolutions

  在目前的一些主流网络中,通常使用pointwise卷积进行维度的降低,从而降低网络的复杂度,但由于输入维度较高,pointwise卷积的开销是十分巨大的。对于小网络而言,昂贵的pointwise卷积会带来明显的性能下降,比如在ResNext unit中,pointwise卷积占据了93.4%的计算量。为此,论文引入了分组卷积,首先探讨了两种ShuffleNet的实现:

  • 图1a是最直接的方法,将所有的操作进行了绝对的维度隔离,但这会导致特定的输出仅关联了很小一部分的输入,阻隔了组间的信息流,降低了表达能力。
  • 图1b对输出的维度进行重新分配,首先将每个组的输出分成多个子组,然后将每个子组输入到不同的组中,能够很好地保留组间的信息流。

  图1b的思想可以简单地用channel shuffle操作进行实现,如图1c所示,假设包含$g$组的卷积层输出为$g\times n$维,首先将输出reshape()为$(g, n)$,然后进行transpose(),最后再flatten()回$g\times n$维。

ShuffleNet Unit

  基于channel shuffle操作,论文提出了两种ShuffleNet unit,从图2a的基础残差结构开始,中间包含一个$3\times 3$深度卷积进行特征提取:

  • 图2b为特征图大小不变的ShuffeNet unit,将开始的$1\times 1$卷积层替换成pointwise分组卷积+channel shuffle操作,第二个pointwise分组卷积的作用是为了恢复到unit的输入维度,方便与shortcut进行element-wise addition。后面的两个卷积操作根据可分离深度卷积论文的建议只接了BN,没有接BN+ReLU。论文尝试了在第二个pointwise分组卷积后面再接一次channel shuffle操作,但并没有提高很多精度。
  • 图2c为特征图大小减半的ShuffleNet unit,可用于block间的特征下采样。主要在shortcut中添加$3\times 3$平均池化以及将最后的element-wise addition替换为channel concatenation,增加输出维度且不会带来太多的计算量。

  Shuffle unit的计算是比较高效的,对于$c\times h\times w$的输入,bottleneck的中间维度为$m$,ResNet unit的计算量为$hw(2cm + 9m^2)$FLOPs,ResNeXt unit的计算量为$hw(2cm+9m^2/g)$FLOPs,ShuffleNet unit的计算量为$hw(2cm/g + 9m)$,$g$为卷积的分组数。在同等计算资源情况下,计算量的减少意味着ShuffeNet可以使用维度更多的特征图,这在小网络中十分重要。

  需要注意的是,尽管深度卷积通常有较低的理论复杂度,但在实现时的效率是不高的。为此,ShuffleNet仅对bottleneck中的特征(维度较低)使用深度卷积。

Network Architecture

  ShuffleNet的结构如表1所示,3个不同的stage由ShuffleNet unit堆叠而成,每个stage的首个ShuffleNet unit比较特殊,使用图2c的stride=2结构,特征图大小缩小一倍,channel数增大一倍。其它的ShuffleNet unit使用图2b的结构,bootlneck的维度设定为输出的$1/4$。表1中设计不同分组数的网络,并修改了对应的输出维度,模型大小整体保持在140MFLOPs左右,网络的分组数越大,可设置维度也越大。

Experiments

  为了设定不同的网络复杂度,对表1的网络层维度加一个缩放因子$s$,比如ShuffleNet 0.5X为表1的所有层输出维度减少一倍。

  对不同scale和分组数的性能。

  对比channel shuffle对不同网络大小作用。

  在保持复杂度的情况下,将stage2-4尽量替换成类似于其它主流网络结构(具体设计看原文),进行性能对比。

  对比同复杂度的MobileNet性能。

  对比主流网络的性能。

  对比作为目标检测主干的性能。

  CPU单线程推理速度对比。

Conclusion

  ShuffleNet的核心在于使用channel shuffle操作弥补分组间的信息交流,使得网络可以尽情使用pointwise分组卷积,不仅可以减少主要的网络计算量,也可以增加卷积的维度,从实验来看,是个很不错的work。

ShuffleNet V2


**论文: ShuffleNet V2: Practical Guidelines for Efficient

CNN Architecture Design**

Introduction

  论文发现,作为衡量计算复杂度的指标,FLOPs实际并不等同于速度。如图1所示,FLOPs相似的网络,其速度却有较大的差别,只用FLOPs作为衡量计算复杂度的指标是不够的,还要考虑内存访问消耗以及GPU并行。基于上面的发现,论文从理论到实验列举了轻量级网络设计的5个要领,然后再根据设计要领提出ShuffleNet V2。

Practical Guidelines for Efficient Network Design

  为了保证结果的正确性,论文在以下工业设备中进行理论的相关测试:

  • GPU. A single NVIDIA GeForce GTX 1080Ti is used. The convolution library is CUDNN 7.0
  • ARM. A Qualcomm Snapdragon 810.

  包含以下5个轻量级网络设计要领:

  1. G1: Equal channel width minimizes memory access cost (MAC).

  主流的网络大都使用深度分离卷积,其中pointwise卷积承担了大部分的计算开销。假设输入维度$c_1$和输出维度$c_2$,特征图大小为$h$和$w$,则$1\times 1$的卷积核的计算量$B=hwc_1 c_2$,内存访问消耗$MAC=hw(c_1+c_2)+c_1 c_2$,MAC可以表示为B相关的公式:

$MAC=hw(c_1+c_2)+c_1 c_2 \ge hw\sqrt{c_1 c_2} + c_1 c_2=\sqrt{hwB} + \frac{B}{hw}$

  上式在$c_1$和$c_2$相等时取得最小值,即输入输出维度相等时,内存访问消耗最小。

  为了避免理论与实际不符,论文在实际设备上进行了对比,在保持FLOPs不变的情况下,调整输入输出维度的比例,可以看到1:1的情况下计算速度最快。因此,在设计结构时尽量保持卷积的输入输出的维度一致。

  1. G2: Excessive group convolution increases MAC  分组卷积能够降低FLOPs,在固定的FLOPs情况下,分组卷积能够使用更多的channel数,但channel的增加会带来MAC的提高,$1\times 1$分组卷积的MAC与FLOPs的关系为

  $g$为分组数,$B=hwc_1 c_2/g$为FLOPs。在固定输入和计算量情况下,MAC随着$g$增加而增加。

  论文同样也在实际设备上进行了对比,使用更多的分组反而降低了推理的速度,主要由于MAC的增加。因此,需要谨慎地根据平台和任务选择分组数,选择大的分组数能带来一定程度的准确率提升,但也会导致计算消耗的快速提升。

  1. G3: Network fragmentation reduces degree of parallelism

  目前一些网络在单个block中使用了多通过,比如NASNET-A在单个block中使用了13个分支,而常规的网络仅使用2-3个分支。尽管这样的设计能够提升准确率,但是对设备并行计算不友好,会带来性能的下降。

  在实际设备上进行对比,在固定FLOPs情况下,分别对比串行和并行分支结构的性能。从结果来看,单分支的结构性能最好,性能的下降在GPU设备上最为明显。

  1. G4: Element-wise operations are non-negligible

  论文对ShuffleNetV1和MobileNetV2的耗时进行了分析,发现element-wise操作(ReLU, AddTensor, AddBias, etc)的消耗是不可忽视的,特别在GPU设备上。尽管这些操作FLOPs不高,但其MAC相对较高。

  在实际设备对比中,固定FLOPs的情况下,使用更多的element-wise操作会导致网络的性能下降。

  最后总结下论文发现的网络设计要领:

  • 使用相同输入输出维度的卷积
  • 了解分组卷积带来的损耗
  • 减少分支的数量
  • 减少element-wise操作

ShuffleNet V2: an Efficient Architecture

  如上面提到的,ShuffleNetV1的pointwise分组卷积以及bottleneck结果均会提高MAC,导致不可忽视的计算损耗。为了达到高性能以及高准确率,关键是在不通过稠密卷积以及过多分组的情况下,获得输入输出一样的大维度卷积。

  ShuffeNetV1的unit结构如图3ab所示,为了达到上面的目的,V1的基础上加入channel split操作,如图3c所示。在每个unit的开头,将特征图分为$c-c^{'}$以及$c^{'}$两部分。根据G3,一个分支直接往后传递。根据G1,另一个分支包含3个输入输出维度一样的卷积。根据G2,不再使用分组卷积,而且unit的开头已经相当于进行了分组卷积。在完成卷积操作后,将特征concate,恢复到unit的输入大小(符合G1),然后进行channel shuffle操作。这里没有了element-wise adddition操作,符合了G4,在实现的时候将concat/channel shuffle/channel split合在一起做了,能够进一步提升性能。

  空间下采样的操作进行了少量的修改,如图3d所示,去掉了channel split操作,因此输出的维度会翻倍。

  类似于ShuffleNetV1,设定$c^{'}=c/2$stage2-4为堆叠ShuffleNet unit的结构,在全局池化前加了一个$1\times 1$卷积来帮助特征融合。ShuffleNetV2不仅速度快,准确率也不低,主要得益于两个方面,首先是模型性能高,使得可以使用更大的维度以及网络容量,其次是channel split可以使得部分特征直接穿过block,相当于DenseNet的特征重用。

  论文对DenseNet以及ShuffleNetV2的特征重用程度进行了可视化对比,在DenseNet中,相邻层的连接比其它层更强,意味着所有层的稠密连接存在冗余。而在ShuffleNet中,层间的影响力以$(1-c^{'})/c=0.5$的倍数进行衰减,与DenseNet有一定的相似性。

Experiment

  将ShuffleNetV2 unit应用到大网络中进行对比。

  对比ShuffleNetV2作为检测网络主干的性能。

  与不同大小的主流分类网络进行性能对比。

Conclusion

  论文从实践出发,以实际的推理速度为指导,总结出了5条轻量级网络的设计要领,并根据要领提出了ShuffleNetV2,很好地兼顾了准确率和速度,其中channel split操作十分亮眼,达到了类似DenseNet的特征重用效果。

CONCLUSION


  ShuffleNet系列是轻量级网络中很重要的一个系列,ShuffleNetV1提出了channel shuffle操作,使得网络可以尽情地使用分组卷积来加速,而ShuffleNetV2则推倒V1的大部分设计,从实际出发,提出channel split操作,在加速网络的同时进行了特征重用,达到了很好的效果 。

如果本文对你有帮助,麻烦点个赞或在看呗~undefined更多内容请关注 微信公众号【晓飞的算法工程笔记】

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ShuffleNet V1
    • Introduction
      • Channel Shuffle for Group Convolutions
        • ShuffleNet Unit
          • Network Architecture
            • Experiments
              • Conclusion
              • ShuffleNet V2
                • Introduction
                  • Practical Guidelines for Efficient Network Design
                    • ShuffleNet V2: an Efficient Architecture
                      • Experiment
                      • CONCLUSION
                      相关产品与服务
                      GPU 云服务器
                      GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档