首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >vmalloc函数

vmalloc函数

作者头像
233333
发布2020-07-07 15:20:40
1.1K0
发布2020-07-07 15:20:40
举报

kmalloc、vmalloc和malloc这三个常用的API函数具有相当的分量,三者看上去很相似,但在实现上大有讲究。kmalloc基于slab分配器,slab缓冲区建立在一个连续的物理地址的大块内存之上,所以缓冲对象也是物理地址连续的。如果在内核中不需要连续的物理地址,而仅仅需要内核空间里连续的虚拟地址的内存块,该如何处理呢?这时vmalloc()就派上用场了。

vmalloc()函数声明如下:

[mm/vmalloc.c]
/**
 *	vmalloc  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
				    GFP_KERNEL | __GFP_HIGHMEM);
}

vmalloc使用的分配掩码是“GFP_KERNEL|__GFP_HIGHMEM”,说明会优先使用高端内存High Memory。

static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller)
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
				gfp_mask, prot, 0, node, caller);
}

这里的VMALLOC_START和VMALLOC_END是vmalloc中最重要的宏,这两个宏定义在arch/arm/include/pgtable.h头文件中。ARM64架构定义在arch/arm64/include/asm/pgtable.h头文件中。VMALLOC_START是vmalloc区域的开始地址,它是在High_memory指定的高端内存开始地址再加上8MB大小的安全区域(VMALLOC_OFFSET)。在ARM Vexpress平台杀昂,vmalloc的内存范围是从0xf000_000到0xff00_0000,大小为240MB,high_memory全局变量的计算在sanity_check_meminfo()函数中。

[arch/arm/include/pgtable.h]
#define VMALLOC_OFFSET		(8*1024*1024)
#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_END		0xff000000UL
[vmalloc()-> __vmalloc_node() -> __vmalloc_node_range()]
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
{
	struct vm_struct *area;
	void *addr;
	unsigned long real_size = size;

	size = PAGE_ALIGN(size);
	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
		goto fail;

	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
	if (!area)
		goto fail;

	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
	if (!addr)
		return NULL;

	/*
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
	 * Now, it is fully initialized, so remove this flag here.
	 */
	clear_vm_uninitialized_flag(area);

	/*
	 * A ref_count = 2 is needed because vm_struct allocated in
	 * __get_vm_area_node() contains a reference to the virtual address of
	 * the vmalloc'ed block.
	 */
	kmemleak_alloc(addr, real_size, 2, gfp_mask);

	return addr;

fail:
	warn_alloc_failed(gfp_mask, 0,
			  "vmalloc: allocation failure: %lu bytes\n",
			  real_size);
	return NULL;
}

在__vmalloc_node_range()函数中,第9行代码vmalloc分配的大小要以页面大小对齐。如果vmalloc要分配的大小为10Byte,那么vmalloc还是会分配出一个页,剩下的4086Byte就浪费了。

第10行代码,判断要分配的内存大小不能为0或者不能大于系统的所有内存。

[vmalloc->__vmalloc_node_range()->__get_vm_area_node()]
static struct vm_struct *__get_vm_area_node(unsigned long size,
		unsigned long align, unsigned long flags, unsigned long start,
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
{
	struct vmap_area *va;
	struct vm_struct *area;

	BUG_ON(in_interrupt());
	if (flags & VM_IOREMAP)
		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);

	size = PAGE_ALIGN(size);
	if (unlikely(!size))
		return NULL;

	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!area))
		return NULL;

	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;

	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
	}

	setup_vmalloc_vm(area, va, flags, caller);

	return area;
}

在__get_vm_area_node()函数中,第7行代码确保当前不在中断上下文中,因为这个函数有可能睡眠。

第8行代码又计算了一次对齐。

第10行代码分配了一个struct vm_struct数据结构来描述这个vmalloc区域。

第12行代码,如果flags中没有定义VM_NO_GUARD标志位,那么要多分配一个页来做安全垫,例如我们要分配4KB的大小内存,vmalloc分配了8KB的内存块。

下面重点要看下第15行代码的alloc_vmap_area()函数。

/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
	struct vmap_area *va;
	struct rb_node *n;
	unsigned long addr;
	int purged = 0;
	struct vmap_area *first;

	BUG_ON(!size);
	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(!is_power_of_2(align));

	va = kmalloc_node(sizeof(struct vmap_area),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

retry:
	spin_lock(&vmap_area_lock);
	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
	 * the vmap_area cached in free_vmap_cache: if size fits
	 * into that hole, we want to scan from vstart to reuse
	 * the hole instead of allocating above free_vmap_cache.
	 * Note that __free_vmap_area may update free_vmap_cache
	 * without updating cached_hole_size or cached_align.
	 */
	if (!free_vmap_cache ||
			size < cached_hole_size ||
			vstart < cached_vstart ||
			align < cached_align) {
nocache:
		cached_hole_size = 0;
		free_vmap_cache = NULL;
	}
	/* record if we encounter less permissive parameters */
	cached_vstart = vstart;
	cached_align = align;

	/* find starting point for our search */
	if (free_vmap_cache) {
		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
		addr = ALIGN(first->va_end, align);
		if (addr < vstart)
			goto nocache;
		if (addr + size < addr)
			goto overflow;

	} else {
		addr = ALIGN(vstart, align);
		if (addr + size < addr)
			goto overflow;

		n = vmap_area_root.rb_node;
		first = NULL;

		while (n) {
			struct vmap_area *tmp;
			tmp = rb_entry(n, struct vmap_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
				n = n->rb_right;
		}

		if (!first)
			goto found;
	}

	/* from the starting point, walk areas until a suitable hole is found */
	while (addr + size > first->va_start && addr + size <= vend) {
		if (addr + cached_hole_size < first->va_start)
			cached_hole_size = first->va_start - addr;
		addr = ALIGN(first->va_end, align);
		if (addr + size < addr)
			goto overflow;

		if (list_is_last(&first->list, &vmap_area_list))
			goto found;

		first = list_entry(first->list.next,
				struct vmap_area, list);
	}

found:
	if (addr + size > vend)
		goto overflow;

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
	__insert_vmap_area(va);
	free_vmap_cache = &va->rb_node;
	spin_unlock(&vmap_area_lock);

	BUG_ON(va->va_start & (align-1));
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

	return va;

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
	if (printk_ratelimit())
		pr_warn("vmap allocation for size %lu failed: "
			"use vmalloc=<size> to increase size.\n", size);
	kfree(va);
	return ERR_PTR(-EBUSY);
}

alloc_vmap_area()在vmalloc整个空间中查找一块大小合适的并且没有人使用的空间,这段空间称为hole。注意这个参数vstart是指VMALLOC_START,vend是指VMALLOC_END。

第25行代码,free_vmap_cache、cached_hole_size和cached_vstart这几个变量是在几年前增加的一个优化选项中,核心思想是从上一次查找的结果中开始查找。这里假设暂时忽略free_vmap_cache这个优化,从47行代码开始看起。

查找的地址从VMALLOC_START开始,首先从vmap_area_root这颗红黑树上查找,这个红黑树里存放着系统中正在使用的vmalloc区块,遍历左子叶节点找区间地址最小区块。如果区块的开始地址等于VMALLOC_START,说明这区块是第一块vmalloc区块。如果红黑树没有一个节点,说明整个vmalloc区间都是空的,见第66行代码。

第54~64行代码,这里遍历的结果是返回起始地址最小vmalloc区块,这个区块有可能是VMALLOC_START开始的,也有可能不是。

然后从VMALLOC_START地址开始,查找每个已存在的vmalloc的区块的缝隙hole能否容纳目前要分配内存的大小。如果不能再已有vmalloc区块的缝隙中找到合适的hole,那么从最后一块vmalloc区块的结束地址开始一个新的vmalloc区域,见第71~83行代码。

第92行代码,找到新区块hole后,调用__insert_vmap_area()函数把这个hole注册到红黑树上。

static void __insert_vmap_area(struct vmap_area *va)
{
	struct rb_node **p = &vmap_area_root.rb_node;
	struct rb_node *parent = NULL;
	struct rb_node *tmp;

	while (*p) {
		struct vmap_area *tmp_va;

		parent = *p;
		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
		if (va->va_start < tmp_va->va_end)
			p = &(*p)->rb_left;
		else if (va->va_end > tmp_va->va_start)
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&va->rb_node, parent, p);
	rb_insert_color(&va->rb_node, &vmap_area_root);

	/* address-sort this list */
	tmp = rb_prev(&va->rb_node);
	if (tmp) {
		struct vmap_area *prev;
		prev = rb_entry(tmp, struct vmap_area, rb_node);
		list_add_rcu(&va->list, &prev->list);
	} else
		list_add_rcu(&va->list, &vmap_area_list);
}

回到__get_vm_area_node()函数的第16行代码上,把刚找到的struct vmap_area *va的相关信息填到struct vm_struct *vm中。

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
	va->vm = vm;
	va->flags |= VM_VM_AREA;
	spin_unlock(&vmap_area_lock);
}

回到__vmalloc_node_range()函数中的第16行代码中的 __vmalloc_area_node()。

[vmalloc()->__vmalloc_node_range()->__vmalloc_area_node()]
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
				 pgprot_t prot, int node)
{
	const int order = 0;
	struct page **pages;
	unsigned int nr_pages, array_size, i;
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;

	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
	if (array_size > PAGE_SIZE) {
		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
				PAGE_KERNEL, node, area->caller);
		area->flags |= VM_VPAGES;
	} else {
		pages = kmalloc_node(array_size, nested_gfp, node);
	}
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
		struct page *page;

		if (node == NUMA_NO_NODE)
			page = alloc_page(alloc_mask);
		else
			page = alloc_pages_node(node, alloc_mask, order);

		if (unlikely(!page)) {
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
		area->pages[i] = page;
		if (gfp_mask & __GFP_WAIT)
			cond_resched();
	}

	if (map_vm_area(area, prot, pages))
		goto fail;
	return area->addr;

fail:
	warn_alloc_failed(gfp_mask, order,
			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
			  (area->nr_pages*PAGE_SIZE), area->size);
	vfree(area->addr);
	return NULL;
}

在__vmalloc_area_node()函数中,首先计算vmalloc分配内存大小有几个页面,然后使用alloc_page()这个API来分配物理页面,并且使用area->pages保存已分配的页面page数据结构指针,最后调用map_vm_area()函数来建立页面映射。

map_vm_area()函数最后调用vmap_page_range_noflush()来建立页面映射关系。

static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long addr = start;
	int err = 0;
	int nr = 0;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
		if (err)
			return err;
	} while (pgd++, addr = next, addr != end);

	return nr;
}

pgd_offset_k()首先从init_mm中获取指向PGD页面目录下的基地址,然后通过地址addr来找到对应的PGD表项。while循环里从开始地址addr到结束地址,按照PGDIR_SIZE的大小依次调用vmap_pud_range()来处理PGD页表。pgd_offset_k()宏定义如下:

#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
#define pgd_offset_k(addr)		pgd_offset(&init_mm, addr)
#define pgd_addr_end(addr, end)
({		\
	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
	(__boundary - 1 < (end) - 1) ? __boudary : (end);
}
)

vmap_pud_range()函数会依次调用vmap_pmd_range()。在ARM Vexpress平台中,页表是二级页表,所以PUD和PMD都指向PGD,最后直接调用vmap_pte_range()。

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	pte_t *pte;

	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

	pte = pte_alloc_kernel(pmd, addr);
	if (!pte)
		return -ENOMEM;
	do {
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
		(*nr)++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

在此场景中,对应的pmd页表项内容为空,即pmd_none(*(pmd)),所以需要新分配pte页表项。

static inline pte_t *
pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
	pte_t *pte = (pte_t *)__get_free_page(PGALLOC_GFP);
	if(pte)
		clean_pte_table(pte);
	return pte;
}

mk_pte()宏利用刚分配的page页面和页面属性prot来新生成一个PTE entry,最后通过set_pte_at()函数把PTE entry设置到硬件页表PTE页表项中。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-07-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档