专栏首页AI算法与图像处理Adam那么棒,为什么还对SGD念念不忘?一个框架看懂深度学习优化算法

Adam那么棒,为什么还对SGD念念不忘?一个框架看懂深度学习优化算法

作者|Juliuszh,https://zhuanlan.zhihu.com/juliuszh,仅作交流学习分享,如有侵权联系删除,谢谢

机器学习界有一群炼丹师,他们每天的日常是:

拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着丹药出炉了。

不过,当过厨子的都知道,同样的食材,同样的菜谱,但火候不一样了,这出来的口味可是千差万别。火小了夹生,火大了易糊,火不匀则半生半糊。

机器学习也是一样,模型优化算法的选择直接关系到最终模型的性能。有时候效果不好,未必是特征的问题或者模型设计的问题,很可能就是优化算法的问题。

说到优化算法,入门级必从SGD学起,老司机则会告诉你更好的还有AdaGrad/AdaDelta,或者直接无脑用Adam。可是看看学术界的最新paper,却发现一众大神还在用着入门级的SGD,最多加个Moment或者Nesterov ,还经常会黑一下Adam。比如 UC Berkeley的一篇论文就在Conclusion中写道:

Despite the fact that our experimental evidence demonstrates that adaptive methods are not advantageous for machine learning, the Adam algorithm remains incredibly popular. We are not sure exactly as to why ……

无奈与酸楚之情溢于言表。

这是为什么呢?难道平平淡淡才是真?

1 一个框架回顾优化算法

SGD

SGD with Momentum

SGD with Nesterov Acceleration

AdaGrad

AdaDelta / RMSProp

Adam

Nadam

请继续阅读:

2 Adam的两宗罪

可以看到,一代又一代的研究者们为了我们能炼(xun)好(hao)金(mo)丹(xing)可谓是煞费苦心。从理论上看,一代更比一代完善,Adam/Nadam已经登峰造极了,为什么大家还是不忘初心SGD呢?

举个栗子。很多年以前,摄影离普罗大众非常遥远。十年前,傻瓜相机开始风靡,游客几乎人手一个。智能手机出现以后,摄影更是走进千家万户,手机随手一拍,前后两千万,照亮你的美(咦,这是什么乱七八糟的)。但是专业摄影师还是喜欢用单反,孜孜不倦地调光圈、快门、ISO、白平衡……一堆自拍党从不care的名词。技术的进步,使得傻瓜式操作就可以得到不错的效果,但是在特定的场景下,要拍出最好的效果,依然需要深入地理解光线、理解结构、理解器材。

优化算法大抵也如此。在上一篇中,我们用同一个框架让各类算法对号入座。可以看出,大家都是殊途同归,只是相当于在SGD基础上增加了各类学习率的主动控制。如果不想做精细的调优,那么Adam显然最便于直接拿来上手。

但这样的傻瓜式操作并不一定能够适应所有的场合。如果能够深入了解数据,研究员们可以更加自如地控制优化迭代的各类参数,实现更好的效果也并不奇怪。毕竟,精调的参数还比不过傻瓜式的Adam,无疑是在挑战顶级研究员们的炼丹经验!

最近,不少paper开怼Adam,我们简单看看都在说什么:

Adam罪状一:可能不收敛

Adam罪状二:可能错过全局最优解

深度神经网络往往包含大量的参数,在这样一个维度极高的空间内,非凸的目标函数往往起起伏伏,拥有无数个高地和洼地。有的是高峰,通过引入动量可能很容易越过;但有些是高原,可能探索很多次都出不来,于是停止了训练。

近期Arxiv上的两篇文章谈到这个问题。

第一篇就是前文提到的吐槽Adam最狠的 The Marginal Value of Adaptive Gradient Methods in Machine Learning 。文中说到,同样的一个优化问题,不同的优化算法可能会找到不同的答案,但自适应学习率的算法往往找到非常差的答案。他们通过一个特定的数据例子说明,自适应学习率算法可能会对前期出现的特征过拟合,后期才出现的特征很难纠正前期的拟合效果。

另外一篇是 Improving Generalization Performance by Switching from Adam to SGD,进行了实验验证。他们CIFAR-10数据集上进行测试,Adam的收敛速度比SGD要快,但最终收敛的结果并没有SGD好。他们进一步实验发现,主要是后期Adam的学习率太低,影响了有效的收敛。他们试着对Adam的学习率的下界进行控制,发现效果好了很多。

于是他们提出了一个用来改进Adam的方法:前期用Adam,享受Adam快速收敛的优势;后期切换到SGD,慢慢寻找最优解。这一方法以前也被研究者们用到,不过主要是根据经验来选择切换的时机和切换后的学习率。这篇文章把这一切换过程傻瓜化,给出了切换SGD的时机选择方法,以及学习率的计算方法,效果看起来也不错。

到底该用Adam还是SGD?

所以,谈到现在,到底Adam好还是SGD好?这可能是很难一句话说清楚的事情。去看学术会议中的各种paper,用SGD的很多,Adam的也不少,还有很多偏爱AdaGrad或者AdaDelta。可能研究员把每个算法都试了一遍,哪个出来的效果好就用哪个了。

而从这几篇怒怼Adam的paper来看,多数都构造了一些比较极端的例子来演示了Adam失效的可能性。这些例子一般过于极端,实际情况中可能未必会这样,但这提醒了我们,**理解数据对于设计算法的必要性。**优化算法的演变历史,都是基于对数据的某种假设而进行的优化,那么某种算法是否有效,就要看你的数据是否符合该算法的胃口了。

算法固然美好,数据才是根本。

另一方面,Adam之流虽然说已经简化了调参,但是并没有一劳永逸地解决问题,默认参数虽然好,但也不是放之四海而皆准。因此,在充分理解数据的基础上,依然需要根据数据特性、算法特性进行充分的调参实验,找到自己炼丹的最优解。而这个时候,不论是Adam,还是SGD,于你都不重要了。

少年,好好炼丹吧。

关于优化算法的选择和tricks,欢迎继续阅读:

3 优化算法的选择与使用策略

上文中,我们用一个框架梳理了各大优化算法,并且指出了以Adam为代表的自适应学习率优化算法可能存在的问题。那么,在实践中我们应该如何选择呢?

下文介绍Adam+SGD的组合策略,以及一些比较有用的tricks。

不同优化算法的核心差异:下降方向

从第一篇的框架中我们看到,不同优化算法最核心的区别,就是第三步所执行的下降方向:

\eta_t = (\alpha/ \sqrt{V_t} ) \cdot m_t

这个式子中,前半部分是实际的学习率(也即下降步长),后半部分是实际的下降方向。SGD算法的下降方向就是该位置的梯度方向的反方向,带一阶动量的SGD的下降方向则是该位置的一阶动量方向。自适应学习率类优化算法为每个参数设定了不同的学习率,在不同维度上设定不同步长,因此其下降方向是缩放过(scaled)的一阶动量方向。

由于下降方向的不同,可能导致不同算法到达完全不同的局部最优点。 An empirical analysis of the optimization of deep network loss surfaces这篇论文中做了一个有趣的实验,他们把目标函数值和相应的参数形成的超平面映射到一个三维空间,这样我们可以直观地看到各个算法是如何寻找超平面上的最低点的。

上图是论文的实验结果,横纵坐标表示降维后的特征空间,区域颜色则表示目标函数值的变化,红色是高原,蓝色是洼地。他们做的是配对儿实验,让两个算法从同一个初始化位置开始出发,然后对比优化的结果。可以看到,几乎任何两个算法都走到了不同的洼地,他们中间往往隔了一个很高的高原。这就说明,不同算法在高原的时候,选择了不同的下降方向。

Adam+SGD 组合策略

正是在每一个十字路口的选择,决定了你的归宿。如果上天能够给我一个再来一次的机会,我会对那个女孩子说:SGD!

不同优化算法的优劣依然是未有定论的争议话题。据我在paper和各类社区看到的反馈,主流的观点认为:Adam等自适应学习率算法对于稀疏数据具有优势,且收敛速度很快;但精调参数的SGD(+Momentum)往往能够取得更好的最终结果。

那么我们就会想到,可不可以把这两者结合起来,先用Adam快速下降,再用SGD调优,一举两得?思路简单,但里面有两个技术问题:

  1. 什么时候切换优化算法?——如果切换太晚,Adam可能已经跑到自己的盆地里去了,SGD再怎么好也跑不出来了。
  2. 切换算法以后用什么样的学习率?——Adam用的是自适应学习率,依赖的是二阶动量的累积,SGD接着训练的话,用什么样的学习率?

上文中提到的论文 Improving Generalization Performance by Switching from Adam to SGD 提出了解决这两个问题的思路。

优化算法的常用tricks

最后,分享一些在优化算法的选择和使用方面的一些tricks。

  1. 首先,各大算法孰优孰劣并无定论。如果是刚入门,优先考虑 SGD+Nesterov Momentum或者Adam.(Standford 231n : The two recommended updates to use are either SGD+Nesterov Momentum or Adam
  2. 选择你熟悉的算法——这样你可以更加熟练地利用你的经验进行调参。
  3. 充分了解你的数据——如果模型是非常稀疏的,那么优先考虑自适应学习率的算法。
  4. 根据你的需求来选择——在模型设计实验过程中,要快速验证新模型的效果,可以先用Adam进行快速实验优化;在模型上线或者结果发布前,可以用精调的SGD进行模型的极致优化。
  5. 先用小数据集进行实验。 有论文研究指出,随机梯度下降算法的收敛速度和数据集的大小的关系不大。(The mathematics of stochastic gradient descent are amazingly independent of the training set size. In particular, the asymptotic SGD convergence rates are independent from the sample size. [2])因此可以先用一个具有代表性的小数据集进行实验,测试一下最好的优化算法,并通过参数搜索来寻找最优的训练参数。
  6. 考虑不同算法的组合。 先用Adam进行快速下降,而后再换到SGD进行充分的调优。切换策略可以参考本文介绍的方法。
  7. 数据集一定要充分的打散(shuffle)。 这样在使用自适应学习率算法的时候,可以避免某些特征集中出现,而导致的有时学习过度、有时学习不足,使得下降方向出现偏差的问题。
  8. 训练过程中持续监控训练数据和验证数据上的目标函数值以及精度或者AUC等指标的变化情况。对训练数据的监控是要保证模型进行了充分的训练——下降方向正确,且学习率足够高;对验证数据的监控是为了避免出现过拟合。
  9. 制定一个合适的学习率衰减策略。 可以使用定期衰减策略,比如每过多少个epoch就衰减一次;或者利用精度或者AUC等性能指标来监控,当测试集上的指标不变或者下跌时,就降低学习率。

神经网络模型的设计和训练要复杂得多,initialization, activation, normalization 等等无不是四两拨千斤,这些方面的技巧我再慢慢写。

参考文献:

[1] CS231n Convolutional Neural Networks for Visual Recognition

[2] Stochastic Gradient Descent Tricks.

[3] Efficient BackProp

本文分享自微信公众号 - AI算法与图像处理(AI_study),作者:CV开发者都爱看的

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-07-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 微软开源计算机视觉专题库,含分类、检测、分割、关键点、跟踪、动作识别等主流方向

    微软在计算机视觉研究领域一直非常活跃,尤其是国内的微软亚洲研究院诞生了诸如残差网络(ResNet)、Faster RCNN、高分辨率网络(HRNet)等影响巨大...

    AI算法与图像处理
  • 基于暗通道去雾算法

    然而基于监督学习类的算法需要采集样本,但是由于实际样本不容易采集需要,通过图像处理叠加雾霾,导致实际效果与真实世界雾霾有较大区别,因此这类算法效果在实验室环境下...

    AI算法与图像处理
  • 10种常用降维算法源代码(python)

    最近发现一位同学整理了一些经典的降维算法,并用python实现常见降维算法的代码,特此推荐。作者:超爱学习

    AI算法与图像处理
  • 【收藏版】深度学习中的各种优化算法

    说到优化算法,入门级必从SGD学起,老司机则会告诉你更好的还有AdaGrad / AdaDelta,或者直接无脑用Adam。可是看看学术界的最新paper,却发...

    zenRRan
  • Adam那么棒,为什么还对SGD念念不忘

    用户1737318
  • 国内首发Nature子刊 Machine Intelligence论文:思想精妙,或对DNN有重大改进!

    昨晚,Nature子刊 Machine Intelligence发布了八月份最新接收论文,共 4 篇。其中两篇来自国内,一篇是清华生命学院龚海鹏和澳大利亚格里菲...

    AI科技评论
  • 观点 | 深度学习,先跟上再说

    用户1737318
  • python 初学者

    当下是一个喧嚣、浮躁的时代。我们总是被生活中大量涌现的热点所吸引,几乎没有深度阅读和思考的时间和机会。我始终认为,学习是需要沉下心来慢慢钻研的,是长

    IT茂茂
  • 【人工智能】机器学习的框架偏向于Python原因

    前言 主要有以下原因: 1. Python是解释语言,程序写起来非常方便 写程序方便对做机器学习的人很重要。 因为经常需要对模型进行各种各样的修改,这在编译语...

    小莹莹
  • Android studio无法创建类和接口和提示问题的完美解决办法

    这就很尴尬了,到底是哪里出了问题,根据template报错,打开file- setting- file and templates 发现里边的templates...

    砸漏

扫码关注云+社区

领取腾讯云代金券