前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >R语言实现 Copula 算法建模依赖性案例分析报告

R语言实现 Copula 算法建模依赖性案例分析报告

作者头像
拓端
发布2020-07-16 23:32:17
1.8K0
发布2020-07-16 23:32:17
举报
文章被收录于专栏:拓端tecdat拓端tecdat

原文链接:http://tecdat.cn/?p=6193

copula是将多变量分布函数与其边际分布函数耦合的函数,通常称为边缘。Copula是建模和模拟相关随机变量的绝佳工具。Copula的主要吸引力在于,通过使用它们,你可以分别对相关结构和边缘(即每个随机变量的分布)进行建模。

copulas如何工作

首先,让我们了解copula的工作方式。

代码语言:javascript
复制
 set.seed(100)

m < -  3
n < -  2000
 
z < -  mvrnorm(n,mu = rep(0,m),Sigma = sigma,empirical = T)

我们使用cor()和配对图检查样本相关性。

代码语言:javascript
复制
pairs.panels(Z)

          [,1] [,2] [,3]
[1,] 1.0000000 0.3812244 0.1937548
[2,] 0.3812244 1.0000000 -0.7890814
[3,] 0.1937548 -0.7890814 1.0000000

代码语言:javascript
复制
pairs.panels(U)

这是包含新随机变量的配对图u

我们可以绘制矢量的3D图表示u

现在,作为最后一步,我们只需要选择边缘并应用它。我选择了边缘为Gamma,Beta和Student,并使用下面指定的参数。

代码语言:javascript
复制
x1 < -  qgamma(u [,1],shape = 2,scale = 1)
x2 < -  qbeta(u [,2],2,2)
x3 < -  qt(u [,3],df = 5)
 

下面是我们模拟数据的3D图。

代码语言:javascript
复制
df < -  cbind(x1,x2,x3)
pairs.panels(DF)
 
          x1 x2 x3
x1 1.0000000 0.3812244 0.1937548
x2 0.3812244 1.0000000 -0.7890814
x3 0.1937548 -0.7890814 1.0000000

这是随机变量的配对图:

使用copula

让我们使用copula复制上面的过程。

现在我们已经通过copula(普通copula)指定了依赖结构并设置了边缘,mvdc()函数生成了所需的分布。然后我们可以使用rmvdc()函数生成随机样本。

代码语言:javascript
复制
colnames(Z2)< -  c(“x1”,“x2”,“x3”)
pairs.panels(Z2)

模拟数据当然非常接近之前的数据,显示在下面的配对图中:

简单的应用示例

现在为现实世界的例子。我们将拟合两个股票 ,并尝试使用copula模拟 。

让我们在R中加载 :

代码语言:javascript
复制
cree < -  read.csv('cree_r.csv',header = F)$ V2
yahoo < -  read.csv('yahoo_r.csv',header = F)$ V2

在直接进入copula拟合过程之前,让我们检查两个股票收益之间的相关性并绘制回归线:

我们可以看到 正相关 :

在上面的第一个例子中,我选择了一个正态的copula模型,但是,当将这些模型应用于实际数据时,应该仔细考虑哪些更适合数据。例如,许多copula更适合建模非对称相关,其他强调尾部相关性等等。我对股票回报的猜测是,t-copula应该没问题,但是猜测肯定是不够的。本质上, 允许我们通过函数使用BIC和AIC执行copula选择 :

代码语言:javascript
复制
  pobs(as.matrix(cbind(cree,yahoo)))[,1]
  selectedCopula
 

$ PAR
[1] 0.4356302

$ PAR2
[1] 3.844534

拟合算法确实选择了t-copula并为我们估计了参数。 让我们尝试拟合建议的模型,并检查参数拟合。

代码语言:javascript
复制
t.cop
set.seed(500)
m < -  pobs(as.matrix(cbind(cree,yahoo)))
 
COEF(FIT)

  rho.1 df
0.43563 3.84453 


我们来看看我们刚估计的copula的密度

代码语言:javascript
复制
rho < -  coef(fit)[1]
df < -  coef(fit)[2]
 

现在我们只需要建立Copula并从中抽取3965个随机样本。

代码语言:javascript
复制
 rCopula(3965,tCopula(  = 2, ,df = df))
 

          [,1] [,2]
[1,] 1.0000000 0.3972454
[2,] 0.3972454 1.0000000

这是包含的样本的图:

t-copula通常适用于在极值(分布的尾部)中存在高度相关性的现象。

现在我们正面临困难:对边缘进行建模。为简单起见,我们将假设正态分布 。因此,我们估计边际的参数。

直方图显示如下:

现在我们在函数中应用copula,从生成的多变量分布中获取模拟观测值。最后,我们将模拟结果与原始数据进行比较。

这是在假设正常边缘和依赖结构的t-copula的情况下数据的最终散点图:

正如您所看到的,t-copula导致结果接近实际观察结果 。

让我们尝试df=1df=8:

显然,该参数df对于确定分布的形状非常重要。随着df增加,t-copula倾向于高斯copula。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-07-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 原文链接:http://tecdat.cn/?p=6193
  • copulas如何工作
  • 使用copula
  • 简单的应用示例
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档