logistic回归

深入解读Logistic回归结果(一):回归系数,OR

(2016-03-08 06:40:50)

转载

标签: logistic回归 教育 杂谈

分类: 统计理论

Logistic回归虽然名字叫”回归” ,但却是一种分类学习方法。使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素。 

一 从线性回归到Logistic回归

线性回归和Logistic回归都是广义线性模型的特例。

假设有一个因变量y和一组自变量x1, x2, x3, ... , xn,其中y为连续变量,我们可以拟合一个线性方程:

y =β0 +β1*x1 +β2*x2 +β3*x3 +...+βn*xn

并通过最小二乘法估计各个β系数的值。

如果y为二分类变量,只能取值0或1,那么线性回归方程就会遇到困难: 方程右侧是一个连续的值,取值为负无穷到正无穷,而左侧只能取值[0,1],无法对应。为了继续使用线性回归的思想,统计学家想到了一个变换方法,就是将方程右边的取值变换为[0,1]。最后选中了Logistic函数:

y = 1 / (1+e-x)

这是一个S型函数,值域为(0,1),能将任何数值映射到(0,1),且具有无限阶可导等优良数学性质。

我们将线性回归方程改写为:

y = 1 / (1+e-z),

其中,z =β0 +β1*x1 +β2*x2 +β3*x3 +...+βn*xn

此时方程两边的取值都在0和1之间。

进一步数学变换,可以写为:

Ln(y/(1-y)) =β0 +β1*x1 +β2*x2 +β3*x3 +...+βn*xn

Ln(y/(1-y))称为Logit变换。我们再将y视为y取值为1的概率p(y=1),因此,1-y就是y取值为0的概率p(y=0),所以上式改写为:

p(y=1) = ez/(1+ez),

p(y=0) = 1/(1+ez),

其中,z =β0 +β1*x1 +β2*x2 +β3*x3 +...+βn*xn.

接下来就可以使用”最大似然法”估计出各个系数β。

二 odds与OR复习

      odds: 称为几率、比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。用p表示事件发生的概率,则:odds = p/(1-p)。

      OR:比值比,为实验组的事件发生几率(odds1)/对照组的事件发生几率(odds2)。 

三 Logistic回归结果的解读

      我们用一个例子来说明,这个例子中包含200名学生数据,包括1个自变量和4个自变量:

      因变量:  hon,表示学生是否在荣誉班(honors class),1表示是,0表示否;

      自变量:

      female :性别,分类变量,1=女,0=男

      read: 阅读成绩,为连续变量

      write: 写作成绩,为连续变量

      math:数学成绩,为连续变量 

      1、不包含任何变量的Logistic回归

      首先拟合一个不包含任何变量的Logistic回归,

      模型为 ln(p/(1-p) =β0

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

截距

-1.12546

0.164

0.000

      这里的系数β就是模型中的β0 = -1.12546,

      我们用p表示学生在荣誉班的概率,所以有ln(p/(1-p) =β0 = -1.12546,

      解方程得:p = 0.245。

      odds = p/1-p = 0.3245

      这里的p是什么意思呢?p就是所有数据中hon=1的概率。

      我们来统计一下整个hon的数据:

hon

例数

百分比

0

151

75.5%

1

49

24.5%

      hon取值为1的概率p为49/(151+49) = 24.5% = 0.245,我们可以手动计算出ln(p/(1-p) = -1.12546,等于系数β0。可以得出关系:

      β0=ln(odds)。

2、包含一个二分类因变量的模型

      拟合一个包含二分类因变量female的Logistic回归,

      模型为 ln(p/(1-p)  =β0 +β1* female.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

female

0.593

.3414294

0.083

截距

-1.47

.2689555

0.000

      在解读这个结果之前,先看一下hon和female的交叉表:

hon

female

Total

Male

Female

0

74

77

151

1

17

32

49

Total

91

109

根据这个交叉表,对于男性(Male),其处在荣誉班级的概率为17/91,处在非荣誉班级的概率为74/91,所以其处在荣誉班级的几率odds1=(17/91)/(74/91) = 17/74 = 0.23;相应的,女性处于荣誉班级的几率odds2 = (32/109)/(77/109)=32/77 = 0.42。女性对男性的几率之比OR = odds2/odds1 = 0.42/0.23 = 1.809。我们可以说,女性比男性在荣誉班的几率高80.9%。

回到Logistic回归结果。截距的系数-1.47是男性odds的对数(因为男性用female=0表示,是对照组),ln(0.23) = -1.47。变量female的系数为0.593,是女性对男性的OR值的对数,ln(1.809) = 0.593。所以我们可以得出关系: OR = exp(β),或者β= ln(OR)(exp(x)函数为指数函数,代表e的x次方)。

3、包含一个连续变量的模型

      拟合一个包含连续变量math的Logistic回归,

      模型为 ln(p/(1-p)  =β0 +β1* math.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

math

.1563404

.0256095

0.000

截距

-9.793942

1.481745

0.000

      这里截距系数的含义是在荣誉班中math成绩为0的odds的对数。我们计算出odds = exp(-9.793942) = .00005579,是非常小的。因为在我们的数据中,没有math成绩为0的学生,所以这是一个外推出来的假想值。

      怎么解释math的系数呢?根据拟合的模型,有:

      ln(p/(1-p)) =  - 9.793942  + .1563404*math

      我们先假设math=54,有:

      ln(p/(1-p))(math=54) = - 9.793942 + .1563404 *54

      然后我们把math提高提高一个单位,令math=55,有:

      ln(p/(1-p))(math=55) = - 9.793942 + .1563404 *55

      两者之差:

      ln(p/(1-p))(math=55) - ln(p/1-p))(math = 54) = 0.1563404.

      正好是变量math的系数。

      由此我们可以说,math每提高1个单位,odds(即p/(1-p),也即处于荣誉班的几率)的对数增加0.1563404。

      那么odds增加多少呢?根据对数公式:

      ln(p/(1-p))(math=55) - ln(p/1-p))(math = 54) = ln((p/(1-p)(math=55)/ (p/(1-p)(math=54))) = ln(odds(math=55)/ odds(math=54)) = 0.1563404.

      所以:

      odds(math=55)/ odds(math=54)  =  exp(0.1563404) = 1.169.

      因此我们可以说,math每升高一个单位,odds增加16.9%。且与math的所处的绝对值无关。

      聪明的读者肯定发现,odds(math=55)/ odds(math=54)不就是OR嘛!

      4、包含多个变量的模型(无交互效应)

      拟合一个包含female、math、read的Logistic回归,

      模型为 ln(p/(1-p) = β0 +β1* math+β2* female+β3* read.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

math

.1229589

0.000

female

0.979948

0.020

read

.0590632

0.026

截距

-11.77025

0.000

      该结果说明:

     (1) 性别:在math和read成绩都相同的条件下,女性(female=1)进入荣誉班的几率(odds)是男性(female=0)的exp(0.979948) = 2.66倍,或者说,女性的几率比男性高166%。

     (2) math成绩:在female和read都相同的条件下,math成绩每提高1,进入荣誉班的几率提高13%(因为exp(0.1229589) = 1.13)。

     (3)read的解读类似math。

      5、包含交互相应的模型

      拟合一个包含female、math和两者交互相应的Logistic回归,

      模型为 ln(p/(1-p)  =β0 +β1* female+β2* math+β3* female *math.

      所谓交互效应,是指一个变量对结果的影响因另一个变量取值的不同而不同。

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

female

-2.899863

0.349

math

.1293781

0.000

female*math

.0669951

0.210

截距

-8.745841

0.000

      注意:female*math项的P为0.21,可以认为没有交互相应。但这里我们为了讲解交互效应,暂时忽略P值,姑且认为他们是存在交互效应的。

      由于交互效应的存在,我们就不能说在保持math和female*math不变的情况下,female的影响如何如何,因为math和female*math是不可能保持不变的!

      对于这种简单的情况,我们可以分别拟合两个方程,

      对于男性(female=0):

      log(p/(1-p))= β0 + β2*math.

      对于女性(female=1):

      log(p/(1-p))= (β0 + β1) + (β2 + β3 )*math.

      然后分别解释。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 安卓手机免root实现对其他软件最高管理(sandbox思想)

      root之后的安卓系统并不稳定,root后有时候会出现一些系统的错误,如果实在忍受不了的话,这时候只能恢复出厂设置了。因此不root是最优的选择,但是不ro...

    用户1680321
  • 方便快捷的求导求积分解方程在线工具sage介绍

      有时候我们需要进行一些复杂的数学计算,比如求导, 求积分,解方程,还是用abcd字母代表变量的方程等,这就需要进行复杂的数学运算还需要具备良好的数学基础。不...

    用户1680321
  • R语言进行机器学习方法及实例(一)

      机器学习的研究领域是发明计算机算法,把数据转变为智能行为。机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有价值的...

    用户1680321
  • JSON Web加密中的高危漏洞

    JSON Web加密容易受到经典的Invalid Curve攻击,这篇文章可以帮助您了解这会对您产生什么影响以及您应该如何应对。

    安恒网络空间安全讲武堂
  • Postman使用完全指南

    可以看到我的请求url中有个{{domain}},这是什么东西呢?这其实是环境变量,我们可以在如下设置环境变量

    诺浅
  • innobackupex命令总结

    innobackupex默认会读取/etc/my.cnf文件中的datadir参数,可以使用--defaults-file手动指定

    bsbforever
  • XtraBackup工具详解 Part 9 innobackupex命令总结

    innobackupex默认会读取/etc/my.cnf文件中的datadir参数,可以使用--defaults-file手动指定

    bsbforever
  • Havex:以工控设备为狩猎目标的恶意软件

    在过去一年,我们对Havex恶意程序家族及其背后的组织保持了高度的关注。Havex被认为以不同工业领域为目标进行攻击的恶意软件,并且在最初的报告中,该恶意软件对...

    FB客服
  • 二十年编程语言风云,哪款是你的爱豆?

    过去一年,编程语言也要决出这一年的最佳语言,会是谁呢,从 TIOBE 上来看,Java、C 和 Python 基本锁定了前三的位置,Java 江湖老大的地位,还...

    double
  • 二十年编程语言风云,哪款是你的爱豆?

    年终岁尾了,编程语言也要决出这一年的最佳语言了,会是谁呢,从 TIOBE 上来看,Java、C 和 Python 基本锁定了前三的位置,Java 江湖老大的地位...

    周萝卜

扫码关注云+社区

领取腾讯云代金券