前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >程序员必备基础:加签验签

程序员必备基础:加签验签

作者头像
捡田螺的小男孩
发布2020-07-21 16:06:14
6.2K1
发布2020-07-21 16:06:14
举报

前言

我们在求职面试中,经常会被问到,如何设计一个安全对外的接口呢? 其实可以回答这一点,加签和验签,这将让你的接口更加有安全。接下来,本文将和大家一起来学习加签和验签。从理论到实战,加油哦~

  • 密码学相关概念
  • 加签验签概念
  • 为什么需要加签、验签
  • 加密算法简介
  • 加签验签相关API
  • 加签验签代码实现
  • 公众号:捡田螺的小男孩

本文已经收录到个人github,文章有用的话,可以给个star呀:

❝https://github.com/whx123/JavaHome ❞

密码学相关概念

明文、密文、密钥、加密、解密

  • 明文:指没有经过加密的信息/数据。
  • 密文:明文被加密算法加密之后,会变成密文,以确保数据安全。
  • 密钥:是一种参数,它是在明文转换为密文或将密文转换为明文的算法中输入的参数。密钥分为对称密钥与非对称密钥。
  • 加密:将明文变成密文的过程。
  • 解密:将密文还原为明文的过程。

对称加密、非对称加密

  • 对称加密:加密和解密使用相同密钥的加密算法。
  • 非对称加密:非对称加密算法需要两个密钥(公开密钥和私有密钥)。公钥与私钥是成对存在的,如果用公钥对数据进行加密,只有对应的私钥才能解密。

什么是公钥私钥?

  • 公钥与私钥是成对存在的密钥,如果用公钥对数据进行加密,只有用对应的私钥才能解密。
  • 其实,公钥就是公开的秘钥,私钥就是要你私自保存好的秘钥。
  • 非对称加密算法需要有一对公私钥~

❝假设你有一个文件,你用字母a加密,只有字母b才能解密;或者你用b加密,只有a才能解密,那么a和b就是一对公私钥。如果密钥a公开,密钥b你就要私自保存好啦,这时候密钥a就是公钥,密钥b就是私钥。相反,如果b公开,a就要保存好,这时候呢,秘钥b就是公钥,秘钥a就是私钥。 ❞

加签验签概念

  • 「加签」:用Hash函数把原始报文生成报文摘要,然后用私钥对这个摘要进行加密,就得到这个报文对应的数字签名。通常来说呢,请求方会把「数字签名和报文原文」一并发送给接收方。
  • 「验签」:接收方拿到原始报文和数字签名后,用「同一个Hash函数」从报文中生成摘要A。另外,用对方提供的公钥对数字签名进行解密,得到摘要B,对比A和B是否相同,就可以得知报文有没有被篡改过。

为什么需要加签验签

上小节中,加签和验签我们已经知道概念啦,那么,为什么需要加签和验签呢?有些朋友可能觉得,我们不是用「公钥加密,私钥解密」就好了嘛?

接下来呢,举个demo吧。

❝假设现在有A公司,要接入C公司的转账系统。在一开始呢,C公司把自己的公钥寄给A公司,自己收藏好私钥。A公司这边的商户,发起转账时,A公司先用C公司的公钥,对请求报文加密,加密报文到达C公司的转账系统时,C公司就用自己的私钥把报文揭开。假设在加密的报文在传输过程中,被中间人Actor获取了,他也郁闷,因为他没有私钥,看着天鹅肉,又吃不了。本来想修改报文,给自己账号转一个亿的,哈哈。这个实现方式看起来是天衣无缝,稳得一匹的。 ❞

但是呢,如果一开始,C公司把公钥发给公司A的时候,就被中间人Actor获取到呢,酱紫就出问题了。

❝中间人Actor截取了C的公钥,他把自己的公钥发给了A公司,A误以为这就是C公司的公钥。A在发起转账时,用Actor的公钥,对请求报文加密,加密报文到在传输过程,Actor又截取了,这时候,他用自己的私钥解密,然后修改了报文(给自己转一个亿),再用C的公钥加密,发给C公司,C公司收到报文后,继续用自己的私钥解密。最后是不是A公司的转账账户损失了一个亿呢~ ❞

C公司是怎么区分报文是不是来自A呢,还是被中间人修改过呢?为了表明身份和报文真实性,这就需要「加签验签」啦!

❝A公司把自己的公钥也发送给C公司,私钥自己保留着。在发起转账时,先用自己的私钥对请求报文加签,于是得到自己的数字签名。再把数字签名和请求报文一起发送给C公司。C公司收到报文后,拿A的公钥进行验签,如果原始报文和数字签名的摘要内容不一致,那就是报文被篡改啦~ ❞

有些朋友可能有疑问,假设A在发自己的公钥给C公司的时候,也被中间人Actor截取了呢。嗯嗯,我们来模拟一波Actor又截取了公钥,看看Actor能干出什么事情来~哈哈

❝假设Actor截取到A的公钥后,随后也截取了到A发往C的报文。他截取到报文后,第一件想做的事肯定是修改报文内容。但是如果单单修改原始报文是不可以的,因为发过去C公司肯定验签不过啦。但是呢,数字签名似乎解不开,因为消息摘要算法(hash算法)无法逆向解开的,只起验证的作用呢.... ❞

所以呢,公钥与私钥是用来加密与加密的,「加签与验签是用来证明身份」,以免被篡改的。

常见加密相关算法简介

  • 消息摘要算法
  • 对称加密算法
  • 非对称加密算法
  • 国密算法

消息摘要算法:

  • 相同的明文数据经过相同的消息摘要算法会得到相同的密文结果值。
  • 数据经过消息摘要算法处理,得到的摘要结果值,是无法还原为处理前的数据的。
  • 数据摘要算法也被称为哈希(Hash)算法或散列算法。
  • 消息摘要算法一般用于签名验签。

消息摘要算法主要分三类:MD(Message Digest,消息摘要算法)、SHA(Secure Hash Algorithm,安全散列算法)和MAC(Message Authentication Code,消息认证码算法)。

MD家族算法

MD(Message Digest,消息摘要算法)家族,包括MD2,MD4,MD5。

  • MD2,MD4,MD5 计算的结果都是是一个128位(即16字节)的散列值,用于确保信息传输完整一致。
  • MD2的算法较慢但相对安全,MD4速度很快,但安全性下降,MD5则比MD4更安全、速度更快。
  • MD5被广泛应用于数据完整性校验、数据(消息)摘要、数据加密等。
  • MD5,可以被破解,对于需要高度安全性的数据,专家一般建议改用其他算法,如SHA-2。2004年,证实MD5算法无法防止碰撞攻击,因此不适用于安全性认证,如SSL公开密钥认证或是数字签名等用途。

举个例子,看看如何获取字符串的MD5值吧:

代码语言:javascript
复制
public class MD5Test {

    public static void main(String[] args) throws UnsupportedEncodingException {
        String s = "123";
        byte[] result = getMD5Bytes(s.getBytes());
        StringBuilder stringBuilder = new StringBuilder();
        for (byte temp : result) {
            if (temp >= 0 && temp < 16) {
                stringBuilder.append("0");
            }
            stringBuilder.append(Integer.toHexString(temp & 0xff));
        }
        System.out.println(s + ",MD5加密后:" + stringBuilder.toString());
    }

    private static byte[] getMD5Bytes(byte[] content) {
        try {
            MessageDigest md5 = MessageDigest.getInstance("MD5");
            return md5.digest(content);
        } catch (NoSuchAlgorithmException e) {
            throw new RuntimeException(e);
        }
    }
}


运行结果:

代码语言:javascript
复制
123,MD5加密后:202cb962ac59075b964b07152d234b70
ShA家族算法

SHA(Secure Hash Algorithm,安全散列算法),包括SHA-0、SHA-1、SHA-2(SHA-256,SHA-512,SHA-224,SHA-384等)、SHA-3。它是在MD算法基础上实现的,与MD算法区别在于「摘要长度」,SHA 算法的摘要「长度更长,安全性更高」

  • SHA-0发布之后很快就被NSA撤回,因为含有会降低密码安全性的错误,它是SHA-1的前身。
  • SHA-1在许多安全协议中广为使用,包括TLS、GnuPG、SSH、S/MIME和IPsec,是MD5的后继者。
  • SHA-2包括SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。它的算法跟SHA-1基本上相似,目前还没有出现明显弱点。
  • SHA-3是2015年正式发布,由于对「MD5出现成功的破解」,以及对SHA-0和SHA-1出现理论上破解的方法,SHA-3应运而生。它与之前算法不同的是,它是可替换的加密散列算法。

SHA-1、SHA-2(SHA-256,SHA-512,SHA-224,SHA-384)等算法是比较常用的,我们来看看跟MD5的对比吧

算法类型

摘要长度(bits)

最大输入消息长度(bits)

碰撞攻击(bits)

性能示例(MiB/s)

MD5

128

无限

≤18(发现碰撞)

335

SHA-1

160

2^64 − 1

<63(发现碰撞)

192

SHA-224

224

2^64 − 1

112

139

SHA-256

256

2^64 − 1

128

139

SHA-384

384

2^128 − 1

192

154

SHA-512

512

2^128 − 1

256

154

  • MD 系列算法: HmacMD2、HmacMD4 和 HmacMD5 ;
  • SHA 系列算法:HmacSHA1、HmacSHA224、HmacSHA256、HmacSHA384 和 HmacSHA512 。

对称加密算法 加密和解密使用「相同密钥」的加密算法就是对称加密算法。常见的对称加密算法有AES、3DES、DES、RC5、RC6等。 DES 数据加密标准(英语:Data Encryption Standard,缩写为 DES)是一种对称密钥加密块密码算法。DES算法的入口参数有三个:Key、Data、Mode。

  • Key: 7个字节共56位,是DES算法的工作密钥;
  • Data: 8个字节64位,是要被加密或被解密的数据;
  • Mode: 加密或解密。

3DES 三重数据加密算法(英语:Triple Data Encryption Algorithm,又称3DES(Triple DES),是一种对称密钥加密块密码,相当于是对每个数据块应用三次数据加密标准(DES)算法。 AES AES,高级加密标准(英语:Advanced Encryption Standard),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。

  • 采用对称分组密码体制,密钥长度为 128 位、 192 位、256 位,分组长度128位
  • 相对于DES ,AES具有更好的 安全性、效率 和 灵活性。

非对称加密算法 非对称加密算法需要两个密钥:公钥和私钥。公钥与私钥是成对存在的,如果用公钥对数据进行加密,只有用对应的私钥才能解密。主要的非对称加密算法有:RSA、Elgamal、DSA、D-H、ECC。 RSA算法

  • RSA加密算法是一种非对称加密算法,广泛应用于加密和数字签名
  • RSA算法原理:两个大素数的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。
  • RSA是被研究得最广泛的公钥算法,从提出到现在,经历了各种攻击的考验,普遍认为是目前最优秀的公钥方案之一。

DSA

  • DSA(Digital Signature Algorithm,数字签名算法),也是一种非对称加密算法。
  • DSA和RSA区别在,DSA仅用于数字签名,不能用于数据加密解密。其安全性和RSA相当,但其性能要比RSA好。

ECC 算法

  • ECC(Elliptic Curves Cryptography,椭圆曲线密码编码学),基于椭圆曲线加密。
  • Ecc主要优势是,在某些情况下,它比其他的方法使用更小的密钥,比如RSA加密算法,提供相当的或更高等级的安全级别。
  • 它的一个缺点是,加密和解密操作的实现比其他机制时间长 (相比RSA算法,该算法对CPU 消耗严重)。

国密算法 国密即国家密码局认定的国产密码算法。为了保障商用密码的安全性,国家商用密码管理办公室制定了一系列密码标准,即SM1,SM2,SM3,SM4等国密算法。 SM1

  • SM1,为对称加密算法,加密强度为128位,基于硬件实现。
  • SM1的加密强度和性能,与AES相当。

SM2

  • SM2主要包括三部分:签名算法、密钥交换算法、加密算法
  • SM2用于替换RSA加密算法,基于ECC,效率较低。

SM3

  • SM3,即国产消息摘要算法。
  • 适用于商用密码应用中的数字签名和验证,消息认证码的生成与验证以及随机数的生成。

SM4

  • SM4是一个分组算法,用于无线局域网产品。
  • 该算法的分组长度为128比特,密钥长度为128比特。
  • 加密算法与密钥扩展算法都采用32轮非线性迭代结构。
  • 解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。
  • 它的功能类似国际算法的DES。

加签验签相关Java的API 这个小节先介绍一下加签验签需要用到的API吧~ 加签相关API - java.security.Signature.getInstance(String algorithm); //根据对应算法,初始化签名对象 - KeyFactory.getInstance(String algorithm);// 根据对应算法,生成KeyFactory对象 - KeyFactory.generatePrivate(KeySpec keySpec); //生成私钥 - java.security.Signature.initSign(PrivateKey privateKey) //由私钥,初始化加签对象 - java.security.Signature.update(byte[] data) //把原始报文更新到加签对象 - java.security.Signature.sign();//加签 「Signature.getInstance(String algorithm);」

  • 根据对应算法,初始化签名对象
  • algorithm参数可以取SHA256WithRSA或者MD5WithRSA等参数,SHA256WithRSA表示生成摘要用的是SHA256算法,签名加签用的是RSA算法

「KeyFactory.getInstance(String algorithm);」

  • 根据对应算法,生成KeyFactory对象,比如你的公私钥用的是RSA算法,那么就传入RSA

「KeyFactory.generatePrivate(KeySpec keySpec)」

  • 生成私钥,加签用的是私钥哈,所以需要通过KeyFactory先构造一个私钥对象。

「Signature.initSign(PrivateKey privateKey)」

  • 加签用的是私钥,所以传入私钥,初始化加签对象

「Signature.update(byte[] data)」

  • 把原始报文更新到加签对象

「java.security.Signature.sign();」

  • 进行加签操作

验签相关API - java.security.Signature.getInstance(String algorithm); //根据对应算法,初始化签名对象 - KeyFactory.getInstance(String algorithm);// 根据对应算法,生成KeyFactory对象 - KeyFactory.generatePublic(KeySpec keySpec); //生成公钥 - java.security.Signature.initVerify(publicKey); //由公钥,初始化验签对象 - java.security.Signature.update(byte[] data) //把原始报文更新到验签对象 - java.security.Signature.verify(byte[] signature);//验签 「Signature.getInstance(String algorithm)」

  • 根据对应算法,初始化签名对象,注意验签和加签是需要用相同的algorithm算法参数哦~

「KeyFactory.getInstance(String algorithm);」

  • 根据对应算法,生成KeyFactory对象

「KeyFactory.generatePublic(KeySpec keySpec);」

  • 生成公钥,验签用的是公钥,通过KeyFactory先构造一个公钥对象

「Signature.initVerify(publicKey);」

  • 公钥验签,所以传入公钥对象参数,初始化验签对象

「Signature.update(byte[] data)」

  • 把原始报文更新到加签对象

「Signature.verify(byte[] signature);」

  • 进行验签操作

加签验签代码实现 前几个小节讨论完概念,是时候上代码实战了,我这边用的是SHA-256作为摘要算法,RSA作为签名验签算法,如下: package pattern; import sun.misc.BASE64Decoder; import sun.misc.BASE64Encoder; import java.io.IOException; import java.io.UnsupportedEncodingException; import java.security.*; import java.security.spec.InvalidKeySpecException; import java.security.spec.PKCS8EncodedKeySpec; /** * 加签验签demo * @Author 捡田螺的小男孩 */ public class SignatureTest { //公钥字符串 private static final String PUBLIC_KEY_STR = "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDaJzVjC5K6kbS2YE2fiDs6H8pB\n" + "JFDGEYqqJJC9I3E0Ebr5FsofdImV5eWdBSeADwcR9ppNbpORdZmcX6SipogKx9PX\n" + "5aAO4GPesroVeOs91xrLEGt/arteW8iSD+ZaGDUVV3+wcEdci/eCvFlc5PUuZJou\n" + "M2XZaDK4Fg2IRTfDXQIDAQAB"; //私钥字符串 private static final String PRIVATE_KEY_STR = "MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBANonNWMLkrqRtLZg\n" + "TZ+IOzofykEkUMYRiqokkL0jcTQRuvkWyh90iZXl5Z0FJ4APBxH2mk1uk5F1mZxf\n" + "pKKmiArH09floA7gY96yuhV46z3XGssQa39qu15byJIP5loYNRVXf7BwR1yL94K8\n" + "WVzk9S5kmi4zZdloMrgWDYhFN8NdAgMBAAECgYA9bz1Bn0i68b2KfqRdgOfs/nbe\n" + "0XNN1DLQp2t7WDfRCg01iI1zPkZgyFVZWtI85f5/uIrLs5ArLosL1oNuqqc0nNne\n" + "CvJK+ZxvA98Hx3ZqYTzDnleR054YhofL5awbhSciYVic204DOG1rhSsYWMqtX7J7\n" + "3geoWL7TYdMfYXcCAQJBAPMMKsz6ZJh98EeQ1tDG5gpAGWFQkYNrxZDelP/LjeO0\n" + "TP3XkQnIpcaZoCs7V/rRGRGMWwQ2BUdc/01in89ZZ5ECQQDlx2oBc1CtOAm2UAhN\n" + "1xWrPkZWENQ53wTrwXO4qbTGDfBKon0AehLlGCSqxQ71aufLkNO7ZlX0IHTAlnk1\n" + "TvENAkAGSEQ69CXxgx/Y2beTwfBkR2/gghKg0QJUUkyLqBlMz3ZGAXJwTE1sqr/n\n" + "HiuSAiGhwH0ByNuuEotO1sPGukrhAkAMK26a2w+nzPL+u+hkrwKPykGRZ1zGH+Cz\n" + "19AYNKzFXJGgclCqiMydY5T1knBDYUEbj/UW1Mmyn1FvrciHoUG1AkAEMEIuDauz\n" + "JabEAU08YmZw6OoDGsukRWaPfjOEiVhH88p00veM1R37nwhoDMGyEGXVeVzNPvk7\n" + "cELg28MSRzCK"; public static void main(String[] args) throws SignatureException, NoSuchAlgorithmException, InvalidKeyException, IOException, InvalidKeySpecException { //原始报文 String plain = "欢迎大家关注我的公众号,捡田螺的小男孩"; //加签 byte[] signatureByte = sign(plain); System.out.println("原始报文是:" + plain); System.out.println("加签结果:"); System.out.println(new BASE64Encoder().encode(signatureByte)); //验签 boolean verifyResult = verify(plain, signatureByte); System.out.println("验签结果:" + verifyResult); } /** * 加签方法 * @param plain * @return * @throws NoSuchAlgorithmException * @throws InvalidKeyException * @throws UnsupportedEncodingException * @throws SignatureException */ private static byte[] sign(String plain) throws NoSuchAlgorithmException, InvalidKeyException, UnsupportedEncodingException, SignatureException { //根据对应算法,获取签名对象实例 Signature signature = Signature.getInstance("SHA256WithRSA"); //获取私钥,加签用的是私钥,私钥一般是在配置文件里面读的,这里为了演示方便,根据私钥字符串生成私钥对象 PrivateKey privateKey = getPriveteKey(PRIVATE_KEY_STR); //初始化签名对象 signature.initSign(privateKey); //把原始报文更新到对象 signature.update(plain.getBytes("UTF-8")); //加签 return signature.sign(); } /** * 验签方法 * @param plain * @param signatureByte * @return * @throws NoSuchAlgorithmException * @throws InvalidKeyException * @throws IOException * @throws SignatureException * @throws InvalidKeySpecException */ private static boolean verify(String plain, byte[] signatureByte) throws NoSuchAlgorithmException, InvalidKeyException, IOException, SignatureException, InvalidKeySpecException { //获取公钥 PublicKey publicKey = getPublicKey(PUBLIC_KEY_STR); //根据对应算法,获取签名对象实例 Signature signature = Signature.getInstance("SHA256WithRSA"); //初始化签名对象 signature.initVerify(publicKey); //把原始报文更新到签名对象 signature.update(plain.getBytes("UTF-8")); //进行验签 return signature.verify(signatureByte); } private static PublicKey getPublicKey(String publicKeyStr) throws InvalidKeySpecException, IOException { PublicKey publicKey = null; try { java.security.spec.X509EncodedKeySpec bobPubKeySpec = new java.security.spec.X509EncodedKeySpec( new BASE64Decoder().decodeBuffer(publicKeyStr)); // RSA对称加密算法 java.security.KeyFactory keyFactory; keyFactory = java.security.KeyFactory.getInstance("RSA"); // 生成公钥对象 publicKey = keyFactory.generatePublic(bobPubKeySpec); } catch (NoSuchAlgorithmException e) { e.printStackTrace(); } return publicKey; } private static PrivateKey getPriveteKey(String privateKeyStr) { PrivateKey privateKey = null; PKCS8EncodedKeySpec priPKCS8; try { priPKCS8 = new PKCS8EncodedKeySpec(new BASE64Decoder().decodeBuffer(privateKeyStr)); KeyFactory keyf = KeyFactory.getInstance("RSA"); privateKey = keyf.generatePrivate(priPKCS8); } catch (IOException | NoSuchAlgorithmException | InvalidKeySpecException e) { e.printStackTrace(); } return privateKey; } } 「运行结果:」 原始报文是:欢迎大家关注我的公众号,捡田螺的小男孩 加签结果: Oz15/aybGe42eGHbc+iMoSYHSCc8tfRskTVjjGSTPD4HjadL0CC5JUWNUW0WxHjUb4MvxWo2oeWE Qw0+m61d+JgBMto/TWcVDcgwL/AbObsbWdQ6E/fVRqG13clkE8MyKsjt9Z7tcbwpycYTv0rUR4co rndAVfBdtv5KeV+OXqM= 验签结果:true 微信公众号 Reference [1]维基百科: https://zh.wikipedia.org/wiki/Wikipedia:%E9%A6%96%E9%A1%B5[2]百度百科: https://baike.baidu.com/[3]常用消息摘要算法简介: https://cloud.tencent.com/developer/article/1584742[4]浅谈常见的七种加密算法及实现: https://juejin.im/post/5b48b0d7e51d4519962ea383#heading-12[5]【易错概念】国密算法SM1(SCB2)、SM2、SM3、SM4、SM7、SM9、ZUC: https://www.jianshu.com/p/8c3657a1769f

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-07-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 捡田螺的小男孩 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 密码学相关概念
    • 明文、密文、密钥、加密、解密
      • 对称加密、非对称加密
        • 什么是公钥私钥?
        • 加签验签概念
        • 为什么需要加签验签
        • 常见加密相关算法简介
          • 消息摘要算法:
            • MD家族算法
            • ShA家族算法
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档