Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/AMS-Regular.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >数据增强策略(一)

数据增强策略(一)

作者头像
机器视觉CV
发布于 2020-08-04 02:06:20
发布于 2020-08-04 02:06:20
2.1K00
代码可运行
举报
文章被收录于专栏:机器视觉CV机器视觉CV
运行总次数:0
代码可运行

数据增强汇总仓库

一个强大的数据增强仓库 https://github.com/aleju/imgaug

介绍了大量不同任务的数据增强方法,包括代码和可视化

另一份数据增强的文档是百度深度学习框架 PandlePandle 的介绍 https://paddleclas.readthedocs.io/zh_CN/latest/advanced_tutorials/image_augmentation/ImageAugment.html

以下详细介绍几种数据增强的策略

Mix up

论文:

  • 《mixup: Beyond Empirical Risk Minimization》 https://arxiv.org/abs/1710.09412
  • 《Bag of Tricks for Image Classification with Convolutional Neural Networks》 https://arxiv.org/abs/1812.01187

代码

  • mix up 在 cifar10 的应用(分类):https://github.com/facebookresearch/mixup-cifar10
  • 可视化 :https://github.com/pascal1129/cv_notes/blob/master/codes/mixup.ipynb
算法原理:

几乎无额外计算开销的情况下稳定提升 1 个百分点的图像分类精度。也可以使用在目标检测上面

  • 对于输入的一个 batch 的待测图片 images,将其和随机抽取的图片进行融合,融合比例为
λ

,得到混合张量 inputs;

  • 第 1 步中图片融合的比例
λ

是 [0,1] 之间的随机实数,符合

β

分布 numpy.random.beta (alpha, alpha),相加时两张图对应的每个像素值直接相加,即

inputs=λimages+(1λ)imagesrandom
  • 将第 1 步中得到的混合张量 inputs 传递给 model 得到输出张量 outpus,随后计算损失函数时,我们针对两个图片的标签分别计算损失函数,然后按照比例
λ

进行损失函数的加权求和,即

不同的

值得到的结果

代码示例

一份简单的代码实现如下:

https://github.com/facebookresearch/mixup-cifar10/blob/master/train.py

这里相当于把输入打乱后的输入进行权重相加

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
def mixup_data(x, y, alpha=1.0, use_cuda=True):
    '''Returns mixed inputs, pairs of targets, and lambda'''
    if alpha > 0:
        lam = np.random.beta(alpha, alpha)
    else:
        lam = 1

    batch_size = x.size()[0]
    if use_cuda:
        index = torch.randperm(batch_size).cuda()
    else:
        index = torch.randperm(batch_size) # 打乱索引顺序

    mixed_x = lam * x + (1 - lam) * x[index, :] # 这里就相当于不同的两种进行混合
    y_a, y_b = y, y[index]
    return mixed_x, y_a, y_b, lam


def mixup_criterion(criterion, pred, y_a, y_b, lam):
    return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)

Cutout

论文:《Improved Regularization of Convolutional Neural Networks with Cutout》https://arxiv.org/abs/1708.04552

代码:https://github.com/uoguelph-mlrg/Cutout

算法原理

随机的将样本中的部分区域 cut 掉,并且填充 0 像素值,分类的结果不变;

实验结果

CutMix

论文:《CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features》https://arxiv.org/abs/1905.04899

代码:https://github.com/clovaai/CutMix-PyTorch

算法原理

CutMix 是将一部分区域 cut 掉然后随机填充训练集中的其他数据的区域像素值,分类结果按一定的比例分配。进而提高了模型对抗输入破坏的鲁棒性

作者认为 mixup 的缺点是:

Mixup samples suffer from the fact that they are locally ambiguous and unnatural, and therefore confuses the model, especially for localization。

算法基本原理:通过设计一个遮罩 M,它的大小与图片大小一致,每个像素取值为 0 或者 1,然后通过 M 与图 A 进行像素点乘法运算、1-M 与图 B 进行像素点乘法运算,然后两者相加得到一张新的图片。标签类别根据相应比例重新生成。

在大部分任务中均有提升

基于 CutMix 的预训练模型可以在 Pascal VOC 上实现性能提升,但它并不是专门为目标检测器设计的。

参考:https://blog.csdn.net/weixin_38715903/article/details/103999227

Gridmask

论文:《GridMask Data Augmentation》https://arxiv.org/abs/2001.04086

代码:https://github.com/Jia-Research-Lab/GridMask

在不同任务上的效果
基本原理

Gridmask 的基本原理就是利用一张和原图同样大小的网格蒙版(mask,上面的值只有 0 和 1)并随机对蒙版进行翻转,然后与原图进行相乘,得到最终的结果。

该方法类似于正则化的效果,如果蒙版上 1 的数量较多,也就是保持信息的比例较大,那么模型有可能存在过拟合的风险,反之,若保持信息的比例较少,则存在欠拟合的风险。

这种数据增强的方法有 4 个参数

,其物理意义如下:

参考:https://zhuanlan.zhihu.com/p/103992528

Mosaic

Mosaic 是 YOLOv4 提出的一种数据增强方法,在 Cutmix 中我们组合了两张图像,而在 Mosaic 中我们使用四张训练图像按一定比例组合成一张图像,使模型学会在更小的范围内识别对象。其次还有助于显著减少对 batch-size 的需求。

参考:https://mp.weixin.qq.com/s/Cl_BCkRVABXsBnZd9siJtw

Label Smoothing

论文:https://arxiv.org/abs/1512.00567

算法原理

Label Smoothing 是在论文《Rethinking the Inception Architecture for Computer Vision》中提到的一种对于输出进行正则化的方法。核心就是对 label 进行 soft 操作,不要给 0 或者 1 的标签,而是有一个偏移,相当于在原 label 上增加噪声,让模型的预测值不要过度集中于概率较高的类别,把一些概率放在概率较低的类别。

对于一个 K 分类的模型,输入 x,模型计算类别为 k 的概率为

假设真实分布为

,则交叉熵损失函数为

最小化交叉熵等价最大化似然函数。交叉熵函数对逻辑输出求导

正常情况下,如果实际的标签 y=k (第 k 类),那么

,那么为了使损失尽量小, p (k) 必须要尽量接近于 1,那么模型对于结果预测会更加自信。这就会导致两个问题

  • 1、over-fitting
  • 2、使得损失函数对逻辑输出的导数差异变大,降低了模型的适应能力。

为了避免模型过于自信,引入一个独立于样本分布的变量

实验中使用均匀分布代替

,即

参考:https://www.cnblogs.com/pprp/p/12771430.html

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-08-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器视觉CV 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
部署架构已固定,如何无痛涨点?
大家好,我是灿视。昨天好兄弟发了一篇文章,文章是:“教你如何更好的训练目标检测模型”。
灿视学长
2021/07/30
6390
部署架构已固定,如何无痛涨点?
数据增强英文_数据加噪处理
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
全栈程序员站长
2022/11/08
4220
数据增强英文_数据加噪处理
深度学习应用篇-计算机视觉-图像增广1:数据增广、图像混叠、图像剪裁类变化类等详解
在图像分类任务中,图像数据的增广是一种常用的正则化方法,主要用于增加训练数据集,让数据集尽可能的多样化,使得训练的模型具有更强的泛化能力,常用于数据量不足或者模型参数较多的场景。除了 ImageNet 分类任务标准数据增广方法外,还有8种数据增广方式非常常用,这里对其进行简单的介绍和对比,大家也可以将这些增广方法应用到自己的任务中,以获得模型精度的提升。这8种数据增广方式在ImageNet上的精度指标如 图1 所示。
汀丶人工智能
2023/06/03
6000
深度学习应用篇-计算机视觉-图像增广1:数据增广、图像混叠、图像剪裁类变化类等详解
mix的中文是什么_mix是最小的意思吗
《mixup:BEYOND EMPIRICAL RISK MINIMIZATION》
全栈程序员站长
2022/11/09
6420
mix的中文是什么_mix是最小的意思吗
计算机视觉的数据增广技术大盘点!附涨点神器,已开源!
如果要把深度学习开发过程中几个环节按重要程度排个序的话,相信准备训练数据肯定能排在前几位。要知道一个模型网络被编写出来后,也只是一坨代码而已,和智能基本不沾边,它只有通过学习大量的数据,才能学会如何作推理。因此训练数据其实和一样东西非常像!——武侠小说中的神功秘笈,学之前菜鸟一只,学之后一统江湖!
深度学习技术前沿公众号博主
2020/09/11
1.3K0
计算机视觉的数据增广技术大盘点!附涨点神器,已开源!
想读懂YOLOV4,你需要先了解下列技术(一)
yolov4论文:YOLOv4: Optimal Speed and Accuracy of Object Detection arxiv:https://arxiv.org/abs/2004.10934 github源码:https://github.com/AlexeyAB/darknet
磐创AI
2021/08/05
9160
想读懂YOLOV4,你需要先了解下列技术(一)
GridMask:SOTA 数据增广方法,显著改进分类、检测、分割效果
给大家介绍一篇非常简单又提点效果明显的2020年最新论文,通过GridMask数据增强方法提升模型鲁棒性,在图像分类、检测、分割三个问题上都做了实验,提升效果明显,好于当前SOTA 的autoaugment。
CV君
2020/02/21
2.1K1
CV学习笔记(三十二):图像分类八股
图像分类领域大佬众多,模型和论文更新速度也很快,很多数据集也早已经刷满,但回归到图像分类任务本体,大体的结构类似,一些经验也可以套用,因此记录下来,常看常新。
云时之间
2021/03/25
8360
2D和3D数据增强方法和Python代码
在前面的文章里我们讲过,机器学习和深度学习在训练过程中,训练误差不断下降,但测试误差下降到一定程度后就会停止或者上升,出现过拟合现象,解决过拟合问题主要有2个方法,其中一个是正则化(机器学习和深度学习中的正则化方法),另一个方法就是数据增强了。
Minerva
2020/05/26
4.5K0
YOLOv4: 虽迟但到,大型调优现场,43mAP/83FPS | 论文速递
论文: YOLOv4: Optimal Speed and Accuracy of Object Detection
VincentLee
2020/04/24
1K0
一张图的一百种 “活” 法 | MMClassification 数据增强介绍第二弹
既然数据增强手段能够提高模型的泛化能力,那么我们自然希望通过一系列数据增强的组合获得最优的泛化效果,从而衍生出了一系列组合增强手段,这里我们介绍其中最著名也最常用的两个手段,AutoAugment 和 RandAugment。
OpenMMLab 官方账号
2022/01/18
1K0
一张图的一百种 “活” 法 | MMClassification 数据增强介绍第二弹
测试数据增强_预测模型最佳cutoff值
cutout是2017年提出的一种数据增强方法,想法比较简单,即在训练时随机裁剪掉图像的一部分,也可以看作是一种类似dropout的正则化方法。
全栈程序员站长
2022/11/09
4600
测试数据增强_预测模型最佳cutoff值
目标检测系列之五(YOLO V4)
论文题目《YOLOv4: Optimal Speed and Accuracy of Object Detection》 论文地址:https://arxiv.org/abs/2004.10934 论文代码:https://github.com/AlexeyAB/darknet
Minerva
2020/05/25
1.6K0
目标检测算法YOLOv4详解
YOLOv4是精度速度最优平衡, 各种调优手段是真香,本文主要从以下几个方面进行阐述:
智能算法
2020/11/17
16.4K0
目标检测算法YOLOv4详解
【深度学习实验】图像处理(三):PIL——自定义图像数据增强操作(随机遮挡、擦除、线性混合)
【深度学习实验】图像处理(一):Python Imaging Library(PIL)库:图像读取、写入、复制、粘贴、几何变换、图像增强、图像滤波 【深度学习实验】图像处理(二):PIL 和 PyTorch(transforms)中的图像处理与随机图片增强
Qomolangma
2024/07/30
2820
【深度学习实验】图像处理(三):PIL——自定义图像数据增强操作(随机遮挡、擦除、线性混合)
Yolo发展史(v4/v5的创新点汇总!)
作者总结了近几年的单阶段和双阶段的目标检测算法以及技巧,并用一个图概括了单阶段和双阶段目标检测网络的差别,two-stage的检测网络,相当于在one-stage的密集检测上增加了一个稀疏的预测器
灿视学长
2021/07/07
2.2K0
MixMatch的fastai / Pytorch实现
在这篇文章中,将讨论和实施Berthelot,Carlini,Goodfellow,Oliver,Papernot和Raffel [1]的“MixMatch:A Semiistic Approach to Semi-Supervised Learning;”。MixMatch于2019年5月发布,是一种半监督学习算法,其性能明显优于以前的方法。
代码医生工作室
2019/06/21
1.8K0
MixMatch的fastai / Pytorch实现
YOLOv5-v6.0学习笔记
YOLOv5-6.0版本的Backbone主要分为Conv模块、CSPDarkNet53和SPPF模块。
Color Space
2023/11/13
2K0
YOLOv5-v6.0学习笔记
YOLO v4它来了:接棒者出现,速度效果双提升
两个月前,YOLO 之父 Joseph Redmon 表示,由于无法忍受自己工作所带来的的负面影响,决定退出计算机视觉领域。此事引发了极大的热议,其中一个悬念就是:我们还能等到 YOLO v4 面世吗?
机器之心
2020/04/26
1.1K0
模型优化4. 正则化+数据增强 Mixup Family代码实现
前三章我们陆续介绍了半监督和对抗训练的方案来提高模型在样本外的泛化能力,这一章我们介绍一种嵌入模型的数据增强方案。之前没太重视这种方案,实在是方法过于朴实。。。不过在最近用的几个数据集上mixup的表现都比较哇塞,所以我们再来聊聊~
风雨中的小七
2022/10/30
1.6K0
模型优化4. 正则化+数据增强 Mixup Family代码实现
推荐阅读
相关推荐
部署架构已固定,如何无痛涨点?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档