专栏首页生信补给站ggalluvial|炫酷桑基图(Sankey),你也可以秀

ggalluvial|炫酷桑基图(Sankey),你也可以秀

桑基图(Sankey diagram),是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。 因1898年Matthew Henry Phineas Riall Sankey绘制的“蒸汽机的能源效率图”而闻名,此后便以其名字命名为“桑基图”。

载入R包,数据

本文使用TCGA数据集中的LIHC的临床数据进行展示,大家可以根据数据格式处理自己的临床数据。也可后台回复“R-桑基图”获得示例数据以及R代码。

#install.packages("ggalluvial")
library(ggalluvial)
library(ggplot2)
library(dplyr)
#读入LIHC临床数据
LIHC <- read.csv("TCGA_lihc.csv",header=TRUE)
#展示数据情况
head(LIHC)
    PATIENT_ID    AGE    SEX AJCC_PATHOLOGIC_TUMOR_STAGE OS_STATUS
1 TCGA-XR-A8TE less50   Male                   STAGE III    LIVING
2 TCGA-5R-AA1D less50 Female                   STAGE III    LIVING
3 TCGA-DD-A1EC less50 Female                     STAGE I    LIVING
4 TCGA-ED-A7PY less50 Female                    STAGE II    LIVING
5 TCGA-RC-A6M5 less50 Female                    STAGE IV    LIVING
6 TCGA-DD-A1EH less50   Male                   STAGE III    LIVING

summary(LIHC)

桑基图的数据结构需要节点权重等信息,ggalluvial 的输入数据可以是长数据亦可以是宽数据。

绘制桑基图

1 宽数据示例

对临床数据进行简单的处理,得到后四个变量的频数,整理成宽数据:以下处理过程可参考数据处理|R-dplyr数据处理|数据框重铸

#分组计算频数
LIHCData <- group_by(data,AGE,SEX,AJCC_PATHOLOGIC_TUMOR_STAGE,OS_STATUS) %>% summarise(., count = n())
#查看宽数据格式
head(LIHCData)
  AGE    SEX    AJCC_PATHOLOGIC_TUMOR_STAGE OS_STATUS count
  <fct>  <fct>  <fct>                       <fct>     <int>
1 50to70 Female STAGE I                     DECEASED     11
2 50to70 Female STAGE I                     LIVING       16
3 50to70 Female STAGE II                    DECEASED      3
4 50to70 Female STAGE II                    LIVING       11
5 50to70 Female STAGE III                   DECEASED      8
6 50to70 Female STAGE III                   LIVING        9

绘制桑基图

ggplot(as.data.frame(LIHCData),
       aes(axis1 = AJCC_PATHOLOGIC_TUMOR_STAGE, axis2 = SEX, axis3 = AGE,
           y= count)) +
  scale_x_discrete(limits = c("AJCC_STAGE", "SEX", "AGE"), expand = c(.1, .05)) +
  geom_alluvium(aes(fill = OS_STATUS)) +
  geom_stratum() + geom_text(stat = "stratum", label.strata = TRUE) +
  theme_minimal() +
  ggtitle("Patients in the TCGA-LIHC cohort",
          "stratified by demographics and survival")
  • axis参数设置待展示的节点信息(柱子);
  • geom_alluvium参数设置组间面积连接,此处按生存状态分组;

2 长数据示例

ggplot2通常处理的都是长表格模式,使用to_lodes_form函数即可转换

#to_lodes_form生成alluvium和stratum列,主分组位于key列中
LIHC_long <- to_lodes_form(data.frame(LIHCData),
                              key = "Demographic",
                              axes = 1:3)
head(LIHC_long)
  OS_STATUS count alluvium Demographic stratum
1  DECEASED    11        1         AGE  50to70
2    LIVING    16        2         AGE  50to70
3  DECEASED     3        3         AGE  50to70
4    LIVING    11        4         AGE  50to70
5  DECEASED     8        5         AGE  50to70
6    LIVING     9        6         AGE  50to70

# 绘制桑基图
ggplot(data = LIHC_long,
       aes(x = Demographic, stratum = stratum, alluvium = alluvium,
           y = count, label = stratum)) +
  geom_alluvium(aes(fill = OS_STATUS)) +
  geom_stratum() + geom_text(stat = "stratum") +
  theme_minimal() +
  ggtitle("Patients in the TCGA-LIHC cohort",
          "stratified by demographics and survival")

3 状态变化的趋势

vaccinations为R包内置数据集,可展示同一subject在不同survey状态下的response情况。

data(vaccinations)
levels(vaccinations$response) <- rev(levels(vaccinations$response))
ggplot(vaccinations,
       aes(x = survey, stratum = response, alluvium = subject,
           y = freq,
           fill = response, label = response)) +
  scale_x_discrete(expand = c(.1, .1)) +
  geom_flow() +
  geom_stratum(alpha = .5) +
  geom_text(stat = "stratum", size = 3) +
  theme(legend.position = "none") +
  ggtitle("vaccination survey responses at three points in time")

4 更多细节

vignette(topic = "ggalluvial", package = "ggalluvial")

以上就是如何使用R-ggalluvial包绘制桑基图的简单介绍,可以自己动手展示了 ?。

本文分享自微信公众号 - 生信补给站(Bioinfo_R_Python),作者:生信补给站

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-09-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • R|ML_code-入门(1)

    主要依据爆红GITHUB的百日入门机器学习项目,跟进学习;原文展示的python代码部分进行学习,额外会尝试使用R解决,希望能少弃一些章节。 Github原链接...

    西游东行
  • tidyverse|数据分析常规操作-分组汇总(sumamrise+group_by)

    汇总函数 summarise(),可以将数据框折叠成一行 ,多与group_by()结合使用

    西游东行
  • 简单实例-对比文件

    西游东行
  • 内存数据库专题之数据库性能瓶颈分析之IO

      常言道:有数据,有真相。数据库的性能瓶颈分析也是需要拿出具体的数据来的,否则单纯的说谁比谁性能强弱,都是没有说服力和根据的。关于内存数据库和磁盘数据库的性能...

    数据饕餮
  • 帝国理工最新报告:疫情后人类社会将进入“周期性停摆-重启”循环,我们回不去了?

    疫情在国内的传染趋势逐渐放缓,但欧美各国的确诊率和死亡率都不怎么乐观。截至美国东部时间3月22日下午6点,美国共报告新冠肺炎确诊病例32717例,22日不到18...

    大数据文摘
  • 数据库千万级分库分表和读写分离之「SpringBoot实战」

    因为使用我们使用Sharding-JDBC Spring Boot Starter,所以还是只需要在properties配置文件配置主从库的数据源即可

    IT技术小咖
  • 【Spring Boot 实战】数据库千万级分库分表和读写分离实战

    因为使用我们使用Sharding-JDBC Spring Boot Starter,所以还是只需要在properties配置文件配置主从库的数据源即可

    小东啊
  • Python字符串split()和join()方法应用一例

    Python字符串对象提供了大量的方法,其中split()用来以指定的字符串作为分隔符对字符串进行分隔并返回列表,join()方法使用指定的字符串作为连接符对序...

    Python小屋屋主
  • (数据科学学习手札82)基于geopandas的空间数据分析——geoplot篇(上)

      在前面的基于geopandas的空间数据分析系列文章中,我们已经对geopandas的基础知识、基础可视化,以及如何科学绘制分层设色地图展开了深入的学习,而...

    Feffery
  • Android开发笔记(二十七)对象序列化

    程序中存储和传递信息,需要有个合适的数据结构,最简单的是定义几个变量,变量多了之后再分门别类,便成了聚合若干变量的对象。代码在函数调用时可以直接传递对象,但...

    用户4464237

扫码关注云+社区

领取腾讯云代金券