专栏首页HyperAI超神经还没期末考试,算法却说我的物理一定挂科

还没期末考试,算法却说我的物理一定挂科

By 超神经

场景描述:大学物理是理工科学生的基础必修课程,但也因为有一定的难度,令很多学生望而生畏。研究人员提出了用 AI 算法预测,哪些学生物理课有挂科风险,好让老师更好地进行教学指导和调整教育资源的分配。

关键词:随机森林 决策树 大学物理 预测

不得不说,算法的预测能力越来越强,小到预测夫妻是否会吵架,大到预测地震洪水等何时发生。

现在,算法甚至连你的物理课会不会挂科,都能预测出来。

这是最近西弗吉尼亚大学和加州理工大学的学者们,在 arxiv.org 上发表的一项最新研究。

他们发表了一篇有趣的论文:《Using Machine Learning to Identify the Most At-Risk Students in Physics Classes》(《使用机器学习来识别物理课上,最有挂科风险的学生》)。

爱因斯坦:让我看看是谁会挂科?

论文中表示,通过机器学习算法,可以评估物理基础课中学生的毕业成绩,该预测模型将学生分类为成绩 A、B、C、D、F 和 W(退选)。

注:美国大部分院校采用的评分等级与百分制分数对应规则大约为:A:90+;B:80+;C:70+;D:60+;F:不及格;W:退选课程(Withdrawal 的简写)。

预测成绩:敲响警钟,你还可以抢救一下

还记得被大学物理支配的恐慌吗?

对很多理工科学生来说,大学物理的难度系数与高数相当,是最让人头秃的科目之一。

国外一项研究显示:曾主修工程和科学(统称为 STEM)但最后转专业,或者没能拿到学位的学生中,其中一小半的人就是因为物理和数学等主修课程,实在是太难。

学好高等数学、微积分也是掌握物理的前提之一

STEM 学生,尤其是基础学科的流失率逐年提高,而与此同时,社会对他们的需求却依旧很高,出现了不小的人才缺口。

因此,西弗吉尼亚大学和加州理工大学的研究人员提出,用 AI 算法来拯救这些学生吧。

他们认为,用机器学习算法,来识别哪些学生有挂科风险。这样教师就可以根据预测结果,有针对性地进行指导,从而提高学生的通过率,也能及时了解他们的掌握情况。

算法:参考过往表现,预测未来成绩

样本抽取

研究人员从来两所大学的抽取了三个样本,来训练预测学生表现的人工智能算法。

这些样本数据包括了:学生的 ACT(美国高考)成绩、大学 GPA 、物理课上收集的数据(比如课后作业成绩和考试成绩)。

其中,样本一和样本二来自于美国东部一所大学的物理科学和工程专业的学生。

样本一:包括 2000 年至 2018 年,完成大学物理 1 课程的所有学生,样本量为 7184 人。

样本二: 2016 年秋季至 2019 年春季学期的数据,样本量为 1683 人。样本包括了课堂表现数据,比如平均答题次数、课后作业平均成绩、学期考试分数等。

样本三:数据来自于 2017 年整个学年的力学入门课。样本三收集于另一所大学,该大学位于美国西部。

变量

本研究中所使用的变量,都是来自大学和班级内部。同时,也将一些人口统计信息如性别、族裔等信息纳入其中。

学生的高中成绩、是否有微积分基础等都是考虑的变量

随机森林算法预测

研究中,采用随机森林机器学习算法,来预测学生的入门物理学课程最终成绩。算法最后会将学生分为获得 A、B 或 C 的学生(归为 ABC 类学生)和获得 D、F 或 W 的学生(归为 DFW 类潜在挂科学生)。

为了了解算法的性能,他们将数据集分为测试和训练数据集。训练数据集用于开发分类模型,以训练分类器。

测试数据集则用于表征模型性能。

分类模型预测测试数据集中每个学生的测试结果后,会将预测结果与实际结果进行比较。

结果:尴尬了,准确度 57 %

经过模型调整与验证,研究者得出了预测结果,但准确率实在不太乐观……

模型在三个样本集的表现

他们指出,在对整个样本预测结果中,女性和少数民族学生较多的样本,DFW 准确性较低,他们指出,这需要对人口统计学进行模型调整。

在第一个样本上训练的算法,预测「DFW 类学生」的准确性仅为 16%,研究人员分析,这可能是因为训练集中,成绩为 DFW 的学生比例很低(12%)所致。

样本一中,模型的最佳表现准确度仅仅达到 57%,也就是仅比随机概率好一点点而已。

结果准确率低,模型引争议

面对这个结果,他们认为:对于教育工作者和正在努力学习的学生来说,此类机器学习分类模型,可能是一个强大的工具,可以更好指导教育干预和教育资源的分配。

研究人员:任何模型都不能达到 100% 的准确度

网友:可是... 57% 是不是有点低?

但是,也有批评者认为,像这样的技术,可能会带有偏见或误导性的预测,给学生造成伤害。

一直研究表明,即使接受了大型语料库的训练,人工智能在预测复杂结果方面,仍会存在偏差问题。

此前,亚马逊的内部 AI 招聘工具,就因为表现出对女性的偏见,而被停用。

因此,人们也担心,这种成绩预测算法,不仅不能起到提高 STEM 学生保留率,反而会加剧不平等现象。

当然一切的结果都只是预测,考试嘛,三分天注定,七分靠打拼,剩下的九十分靠老师的心情。

本文分享自微信公众号 - HyperAI超神经(HyperAI),作者:神经小兮

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-08-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 2020 美国大选在即,假新闻也在路上了

    场景描述:出于宣传、牟利等目的,互联网上充满了各种虚假、误导性消息,这类消息被称之为「假新闻」。如何鉴别假新闻,防止被骗,一直以来困扰着大众。为此,一家英国初创...

    HyperAI超神经
  • 创造家庭大和谐,用 AI 给爹妈做个辟谣助手

    这些标题在具有一定科学素养的年轻人看来,根本不用点开,就知道是谣言或者过度夸张,但这些文章却在父母辈的微信群和朋友圈里每天疯传着。

    HyperAI超神经
  • Pytorch 1.4 来了!春节假期好好研究

    内容导读:近日,Facebook 发布了 PyTorch 1.4,新版本增加了诸多新的功能,包括为 PyTorch Mobile 进行 build 级别自定义的...

    HyperAI超神经
  • 深度强化学习综述(上)

    人工智能中的很多应用问题需要算法在每个时刻做出决策并执行动作。对于围棋,每一步需要决定在棋盘的哪个位置放置棋子,以最大可能的战胜对手;对于自动驾驶算法,需要根据...

    SIGAI学习与实践平台
  • 【AlphaGo Zero 核心技术-深度强化学习教程笔记06】价值函数的近似表示

    点击上方“专知”关注获取更多AI知识! 【导读】Google DeepMind在Nature上发表最新论文,介绍了迄今最强最新的版本AlphaGo Zero,不...

    WZEARW
  • 遗传算法如何模拟大自然的进化?

    遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法...

    智能算法
  • 遗传算法如何模拟大自然的进化?

    遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法...

    智能算法
  • 知识点提纲

    操作系统: 1. 进程的有哪几种状态,状态转换图,及导致转换的事件。 2. 进程与线程的区别。 3. 进程通信的几种方式。 4. 线程同步几种方式。(一定要会写...

    用户1624346
  • javascript中那些可以连成片的点

    JavaScript的提高,是一点一滴的提高,这些点滴连接成线,进而连接成为一个面。 这个“面”的知识你都会了之后,会首先从某个点上形成突破再提高,然后这些再提...

    web前端教室
  • 《deep learning》学习笔记(5)——机器学习基础

    http://blog.csdn.net/u011239443/article/details/77202136

    用户1621453

扫码关注云+社区

领取腾讯云代金券