前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CMOS器件输入管脚不能悬空?硬件调试踩坑记录

CMOS器件输入管脚不能悬空?硬件调试踩坑记录

作者头像
单片机点灯小能手
发布2020-08-25 16:05:54
2.4K0
发布2020-08-25 16:05:54
举报
文章被收录于专栏:电子电路开发学习
前言

最近在调试一块板卡时,发现了一个奇怪的问题,一款反相器——CD4049出现异常发热现象。虽然板卡已经做过温箱老化试验了,即在60度恒温条件下最大功率运行24小时,运行还算正常。但是一次偶然的机会,使用热成像仪测量板卡上的发热点时,发现这颗CD4049芯片温度会达到60度,虽然也在工作温度范围,但是还是感觉不太正常。一顿操作猛如虎,抄起烙铁就是干,把芯片拆下来,只连接电源和地引脚,输入输出悬空,再测温度,还是60度。这是为何?

问题现象

CD4049仅仅连接电源和地管脚,或部分未使用到的输入管脚悬空,上电,会出现温度过高现象,但如果使用手指或者示波器探头碰一下某一个输入管脚,芯片的温度又会很快掉下来。

芯片管脚

问题分析

实际上很多问题,都是没有仔细阅读DataSheet造成的,我们来看一下CD4049的Datasheet,由于这款芯片非常常用,所以各个半导体厂家都有这款产品,我使用的是TI公司的。CD4049是一片CMOS 6输入反向缓冲器芯片,单路电源供电,供电范围-0.5~20v,工作温度范围-55~125。

Datasheet下载:

https://wcc-blog.oss-cn-beijing.aliyuncs.com/img/200823/CD4049.pdf

管脚定义,芯片内部有6个反相器,单电源供电,13和16脚没有连接。

管脚定义

内部原理图,可以看到是由两个MOS管构成的反向器,输入端的两个箝位二极管可以把过高的输入电压箝位二极管在CMOS的输入电压值,输入端还加了限流电阻:

内部原理

典型应用电路,重点!可以看到,所有未使用到的输入管脚都直接连接到了地上,而我们实际应用电路中输入管脚是悬空状态,我好像已经找到了问题所在。

应用电路

问题解决

根据官方典型应用电路,把其他未使用到的输入管脚飞线连接到地上,上电,再使用测温仪观察工作温度,一点也不热,问题解决!好了,不说了,又要重新打样

知识拓展

从这次问题排查来看,其实就是两个原因造成的:

  • 没有仔细阅读芯片的DataSheet
  • 不知道CMOS器件输入管脚不能悬空的电路知识

查阅了一些资料,了解到以下几点知识:

  • CMOS器件是电压控制器件,输入阻抗很大,对干扰信号的捕捉能力很强,所以,不用的管脚不能悬空,要接上拉或下拉电阻,给它一个恒定的电平。悬空时输入阻抗高,易受外界噪声干扰,使电路产生误动作,而且也极易造成栅极感应静电而击穿。
  • 在电路设计中,使CMOS器件的输入端悬空是一种不良的设计习惯,因为CMOS器件是电压控制,而未被连接的输入端有靠近CMOS门槛电压输入的趋势,使得芯片内部的三极管作不必要的开关动作,这既增加了噪声干扰,又耗费了系统的功率。
  • CMOS器件内部的2个二极管可以把电压钳位在CMOS器件输入电压值,这2个二极管是高速CMOS器件(74HC系列)静电保护措施的一部分。
  • CMOS器件输入电流非常小,一般是uA级别。

所以,在电路设计时,器件未使用到的管脚处于悬空状态是一种非常不当的做法。既然知道了CMOS器件输入管脚不能悬空,那么TTL器件呢?

  • TTL电路是电流控制器件,CMOS是电压控制器件。
  • TTL器件速度快、功耗大,CMOS器件速度慢、功耗低。
  • TTL门电路输入端悬空相当于输入高电平,可以看做是接了一个无穷大的电阻。
  • TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。
总结

由于日常工作比较杂,偶尔也会和硬件工程师讨论硬件电路原理(chui chui niu bi),深知模拟电路的高深莫测。所谓只有0和1的数字器件,在某种意义上也可以认为是模拟器件的两个极端。所以对于我遇到的这个电路问题的分析和解决,可能没有代表性,但是如果你遇到了和我类似的问题,不妨试试这种方法吧!

投票

我在疫情期间做的基于STM32MP1和Qt的新冠肺炎疫情监控平台,这个小项目报名参加了意法半导体首届创客大赛——STM32创客秀,最近在投票阶段,如果有幸能入围决赛,ST官方会奖励开发板礼包,届时我会把开发板以抽奖的方式回馈给大家

参考资料
  • https://moore.live/news/119045/detail/
  • http://huangbing775.blog.sohu.com/165789317.html
推荐阅读
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-08-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 电子电路开发学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 问题现象
  • 问题分析
  • 问题解决
  • 知识拓展
  • 总结
  • 投票
  • 参考资料
  • 推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档