前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习-文本分类(2)-新闻文本分类

机器学习-文本分类(2)-新闻文本分类

作者头像
西西嘛呦
发布2020-08-26 09:54:32
9200
发布2020-08-26 09:54:32
举报

参考:https://mp.weixin.qq.com/s/6vkz18Xw4USZ3fldd_wf5g

1、数据集下载地址

https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/train_set.csv.zip

https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/test_a.csv.zip

数据集来自天池比赛,训练集20w条样本,测试集A包括5w条样本。而且文本按照字符级别进行了匿名处理,处理后的数据为下:

这里就直接拆分训练集为训练集和测试集了。

在数据集中标签的对应的关系如下:

{'科技': 0, '股票': 1, '体育': 2, '娱乐': 3, '时政': 4, '社会': 5, '教育': 6, '财经': 7, '家居': 8, '游戏': 9, '房产': 10, '时尚': 11, '彩票': 12, '星座': 13}

评价指标:

2、导入相应包

代码语言:javascript
复制
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import RidgeClassifier
import matplotlib.pyplot as plt
from sklearn.metrics import f1_score

3、读取数据

代码语言:javascript
复制
train_path="/content/drive/My Drive/nlpdata/news/train_set.csv"
train_df = pd.read_csv(train_path, sep='\t', nrows=15000)
train_df['text']
代码语言:javascript
复制
train_df['label']

4、进行文本分类

(1)n-gram+岭分类

代码语言:javascript
复制
vectorizer = CountVectorizer(max_features=3000)
train_test = vectorizer.fit_transform(train_df['text'])

clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

0.65441877581244

(2)TF-IDF+岭分类

代码语言:javascript
复制
tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=3000)
train_test = tfidf.fit_transform(train_df['text'])

clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

0.8719372173702

5、探究参数对模型的影响

取大小为5000的样本,保持其他参数不变,令阿尔法从0.15增加至1.5,画出F1关于阿尔法的图像

(1)针对于岭分类而言:阿尔法对模型的影响

代码语言:javascript
复制
sample = train_df[0:5000]
n = int(2*len(sample)/3)
tfidf = TfidfVectorizer(ngram_range=(2,3), max_features=2500)
train_test = tfidf.fit_transform(sample['text'])
train_x = train_test[:n]
train_y = sample['label'].values[:n]
test_x = train_test[n:]
test_y = sample['label'].values[n:]

f1 = []
for i in range(10):
  clf = RidgeClassifier(alpha = 0.15*(i+1), solver = 'sag')
  clf.fit(train_x, train_y)
  val_pred = clf.predict(test_x)
  f1.append(f1_score(test_y, val_pred, average='macro'))

plt.plot([0.15*(i+1) for i in range(10)], f1)
plt.xlabel('alpha')
plt.ylabel('f1_score')
plt.show()

可以看出阿尔法不宜取的过大,也不宜过小。越小模型的拟合能力越强,泛化能力越弱,越大模型的拟合能力越差,泛化能力越强。

(2)max_features对模型的影响

分别取max_features的值为1000、2000、3000、4000,研究max_features对模型精度的影响

代码语言:javascript
复制
f1 = []
features = [1000,2000,3000,4000]
for i in range(4):
  tfidf = TfidfVectorizer(ngram_range=(2,3), max_features=features[i])
  train_test = tfidf.fit_transform(sample['text'])
  train_x = train_test[:n]
  train_y = sample['label'].values[:n]
  test_x = train_test[n:]
  test_y = sample['label'].values[n:]
  clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
  clf.fit(train_x, train_y)
  val_pred = clf.predict(test_x)
  f1.append(f1_score(test_y, val_pred, average='macro'))

plt.plot(features, f1)
plt.xlabel('max_features')
plt.ylabel('f1_score')
plt.show()

可以看出max_features越大模型的精度越高,但是当max_features超过某个数之后,再增加max_features的值对模型精度的影响就不是很显著了。

(3) ngram_range对模型的影响

n-gram提取词语字符数的下边界和上边界,考虑到中文的用词习惯,ngram_range可以在(1,4)之间选取

代码语言:javascript
复制
f1 = []
for i in range(4):
    tfidf = TfidfVectorizer(ngram_range=(1,1), max_features=2000)
    train_test = tfidf.fit_transform(sample['text'])
    train_x = train_test[:n]
    train_y = sample['label'].values[:n]
    test_x = train_test[n:]
    test_y = sample['label'].values[n:]
    clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
    clf.fit(train_x, train_y)
    val_pred = clf.predict(test_x)
    f1.append(f1_score(test_y, val_pred, average='macro'))

    tfidf = TfidfVectorizer(ngram_range=(2,2), max_features=2000)
    train_test = tfidf.fit_transform(sample['text'])
    train_x = train_test[:n]
    train_y = sample['label'].values[:n]
    test_x = train_test[n:]
    test_y = sample['label'].values[n:]
    clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
    clf.fit(train_x, train_y)
    val_pred = clf.predict(test_x)
    f1.append(f1_score(test_y, val_pred, average='macro'))

    tfidf = TfidfVectorizer(ngram_range=(3,3), max_features=2000)
    train_test = tfidf.fit_transform(sample['text'])
    train_x = train_test[:n]
    train_y = sample['label'].values[:n]
    test_x = train_test[n:]
    test_y = sample['label'].values[n:]
    clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
    clf.fit(train_x, train_y)
    val_pred = clf.predict(test_x)
    f1.append(f1_score(test_y, val_pred, average='macro'))

    tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=2000)
    train_test = tfidf.fit_transform(sample['text'])
    train_x = train_test[:n]
    train_y = sample['label'].values[:n]
    test_x = train_test[n:]
    test_y = sample['label'].values[n:]
    clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
    clf.fit(train_x, train_y)
    val_pred = clf.predict(test_x)
    f1.append(f1_score(test_y, val_pred, average='macro'))

[0.7931919639413474, 0.7831242477075827, 0.6293265527038611, 0.8436709720083034, 0.8127288721306228, 0.791639726421815, 0.6425340629702662, 0.8512559206701422, 0.82151852494927, 0.7978544191527702, 0.6500441251723578, 0.8516726763849712, 0. 8275245575862662, 0.7963717190315031, 0.6577157272412916, 0.8485051384495732]

6、其它分类模型

均使用TF-IDF作为预处理方式。

(1)逻辑回归

代码语言:javascript
复制
from sklearn import linear_model

tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=5000)
train_test = tfidf.fit_transform(train_df['text']) # 词向量 15000*max_features

reg = linear_model.LogisticRegression(penalty='l2', C=1.0,solver='liblinear')
reg.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = reg.predict(train_test[10000:])
print('预测结果中各类新闻数目')
print(pd.Series(val_pred).value_counts())
print('\n F1 score为')
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

预测结果中各类新闻数 0 1032 1 1029 2 782 3 588 4 375 5 316 6 224 8 166 7 161 9 123 10 109 11 60 12 23 13 12 dtype: int64

F1 score为 0.8464704900433653

(2)SGDClassifier

代码语言:javascript
复制
tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=5000)
train_test = tfidf.fit_transform(train_df['text']) # 词向量 15000*max_features

reg = linear_model.SGDClassifier(loss="log", penalty='l2', alpha=0.0001,l1_ratio=0.15)
reg.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = reg.predict(train_test[10000:])
print('预测结果中各类新闻数目')
print(pd.Series(val_pred).value_counts())
print('\n F1 score为')
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

(3)SVM

代码语言:javascript
复制
from sklearn import svm
tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=5000)
train_test = tfidf.fit_transform(train_df['text']) # 词向量 15000*max_features

reg = svm.SVC(C=1.0, kernel='linear', degree=3, gamma='auto',decision_function_shape='ovr')
reg.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = reg.predict(train_test[10000:])
print('预测结果中各类新闻数目')
print(pd.Series(val_pred).value_counts())
print('\n F1 score为')
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-08-09 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档