前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python实现线性回归之弹性网回归

python实现线性回归之弹性网回归

作者头像
西西嘛呦
发布2020-08-26 11:09:35
1.6K0
发布2020-08-26 11:09:35
举报

弹性网回归是lasso回归和岭回归的结合,其代价函数为:

若令

,则

由此可知,弹性网的惩罚系数

恰好为岭回归罚函数和Lasso罚函数的一个凸线性组合.当α=0时,弹性网回归即为岭回归;当 α=1时,弹性网回归即为Lasso回归.因此,弹性网回归兼有Lasso回归和岭回归的优点,既能达到变量选择的目的,又具有很好的群组效应。

上述解释摘自:https://blog.csdn.net/weixin_41500849/article/details/80447501

接下来是实现代码,代码来源: https://github.com/eriklindernoren/ML-From-Scratch

首先还是定义一个基类,各种线性回归都需要继承该基类:

代码语言:javascript
复制
class Regression(object):
    """ Base regression model. Models the relationship between a scalar dependent variable y and the independent 
    variables X. 
    Parameters:
    -----------
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    """
    def __init__(self, n_iterations, learning_rate):
        self.n_iterations = n_iterations
        self.learning_rate = learning_rate

    def initialize_weights(self, n_features):
        """ Initialize weights randomly [-1/N, 1/N] """
        limit = 1 / math.sqrt(n_features)
        self.w = np.random.uniform(-limit, limit, (n_features, ))

    def fit(self, X, y):
        # Insert constant ones for bias weights
        X = np.insert(X, 0, 1, axis=1)
        self.training_errors = []
        self.initialize_weights(n_features=X.shape[1])

        # Do gradient descent for n_iterations
        for i in range(self.n_iterations):
            y_pred = X.dot(self.w)
            # Calculate l2 loss
            mse = np.mean(0.5 * (y - y_pred)**2 + self.regularization(self.w))
            self.training_errors.append(mse)
            # Gradient of l2 loss w.r.t w
            grad_w = -(y - y_pred).dot(X) + self.regularization.grad(self.w)
            # Update the weights
            self.w -= self.learning_rate * grad_w

    def predict(self, X):
        # Insert constant ones for bias weights
        X = np.insert(X, 0, 1, axis=1)
        y_pred = X.dot(self.w)
        return y_pred

然后是弹性网回归的核心:

代码语言:javascript
复制
class l1_l2_regularization():
    """ Regularization for Elastic Net Regression """
    def __init__(self, alpha, l1_ratio=0.5):
        self.alpha = alpha
        self.l1_ratio = l1_ratio

    def __call__(self, w):
        l1_contr = self.l1_ratio * np.linalg.norm(w)
        l2_contr = (1 - self.l1_ratio) * 0.5 * w.T.dot(w) 
        return self.alpha * (l1_contr + l2_contr)

    def grad(self, w):
        l1_contr = self.l1_ratio * np.sign(w)
        l2_contr = (1 - self.l1_ratio) * w
        return self.alpha * (l1_contr + l2_contr) 

接着是弹性网回归的代码:

代码语言:javascript
复制
class ElasticNet(Regression):
    """ Regression where a combination of l1 and l2 regularization are used. The
    ratio of their contributions are set with the 'l1_ratio' parameter.
    Parameters:
    -----------
    degree: int
        The degree of the polynomial that the independent variable X will be transformed to.
    reg_factor: float
        The factor that will determine the amount of regularization and feature
        shrinkage. 
    l1_ration: float
        Weighs the contribution of l1 and l2 regularization.
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    """
    def __init__(self, degree=1, reg_factor=0.05, l1_ratio=0.5, n_iterations=3000, 
                learning_rate=0.01):
        self.degree = degree
        self.regularization = l1_l2_regularization(alpha=reg_factor, l1_ratio=l1_ratio)
        super(ElasticNet, self).__init__(n_iterations, 
                                        learning_rate)

    def fit(self, X, y):
        X = normalize(polynomial_features(X, degree=self.degree))
        super(ElasticNet, self).fit(X, y)

    def predict(self, X):
        X = normalize(polynomial_features(X, degree=self.degree))
        return super(ElasticNet, self).predict(X)

其中涉及到的一些函数可参考:https://cloud.tencent.com/developer/article/1686588

最后是运行主函数:

代码语言:javascript
复制
from __future__ import print_function
import matplotlib.pyplot as plt
import sys
sys.path.append("/content/drive/My Drive/learn/ML-From-Scratch/")
import numpy as np
import pandas as pd
# Import helper functions
from mlfromscratch.supervised_learning import ElasticNet
from mlfromscratch.utils import k_fold_cross_validation_sets, normalize, mean_squared_error
from mlfromscratch.utils import train_test_split, polynomial_features, Plot


def main():

    # Load temperature data
    data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].values).T
    temp = data["temp"].values

    X = time # fraction of the year [0, 1]
    y = temp

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    poly_degree = 13

    model = ElasticNet(degree=15, 
                        reg_factor=0.01,
                        l1_ratio=0.7,
                        learning_rate=0.001,
                        n_iterations=4000)
    model.fit(X_train, y_train)

    # Training error plot
    n = len(model.training_errors)
    training, = plt.plot(range(n), model.training_errors, label="Training Error")
    plt.legend(handles=[training])
    plt.title("Error Plot")
    plt.ylabel('Mean Squared Error')
    plt.xlabel('Iterations')
    plt.savefig("test1.png")
    plt.show()

    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print ("Mean squared error: %s (given by reg. factor: %s)" % (mse, 0.05))

    y_pred_line = model.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    plt.plot(366 * X, y_pred_line, color='black', linewidth=2, label="Prediction")
    plt.suptitle("Elastic Net")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
    plt.savefig("test2.png")
    plt.show()

if __name__ == "__main__":
    main()

结果:

Mean squared error: 11.232800207362782 (given by reg. factor: 0.05)

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-04-30 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档