前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python实现决策树

python实现决策树

作者头像
西西嘛呦
发布2020-08-26 17:04:24
6990
发布2020-08-26 17:04:24
举报

什么是决策树?

决策树是一种基本的分类和回归方法。以分类决策树为例:

决策树通常包含哪三个步骤?

特征选择、决策树的生成和决策树的修剪

决策树与if-then规则?

直接以一个例子看看数如何构建决策树的:

根据不同的特征可以有不同的决策树:

那么如何从根节点开始选择特征进行决策树的构建呢?

最基础的是使用信息增益来表示。

首先得了解熵和条件熵的定义。

熵:用于表示随机变量不确定性的度量 。假设X是一个取值有限的随机变量,其概率分布为:

那么随机变量的熵的定义是:

什么是信息增益?

信息增益有什么作用呢?

计算步骤?

这里以上述表格中的数据为例:

我们最终需要的是分为是否会申请贷款,针对于是否需要申请贷款(即经验熵)为:

然后我们分别计算每一个特征的条件经验熵(也就是每一个特征对于数据集D的信息增益) ,分别以A1,A2,A3,A4标识年龄、有工作、有自己方法、信贷情况4个特征,则有:

信息增益存在的问题?

那么什么是信息增益比?

提到决策树就需要了解到ID3、C4.5CART三种。其中ID3就是使用信息增益来进行特征选择,而C4.5使用的是信息增益比进行选择。

ID3生成的决策树如下:

由于ID3只有决策树的生成过程,因此容易过拟合。

CART算法?

以分类为例,CART使用基尼指数来进行特征选择:

还是以上述的数据集进行计算:

还有其剪枝算法,就不列举了。

上述解释摘自:统计学习方法。

下面是代码实现,代码来源: https://github.com/eriklindernoren/ML-From-Scratch

from __future__ import division, print_function
import numpy as np

from mlfromscratch.utils import divide_on_feature, train_test_split, standardize, mean_squared_error
from mlfromscratch.utils import calculate_entropy, accuracy_score, calculate_variance

class DecisionNode():
    """Class that represents a decision node or leaf in the decision tree

    Parameters:
    -----------
    feature_i: int
        Feature index which we want to use as the threshold measure.
    threshold: float
        The value that we will compare feature values at feature_i against to
        determine the prediction.
    value: float
        The class prediction if classification tree, or float value if regression tree.
    true_branch: DecisionNode
        Next decision node for samples where features value met the threshold.
    false_branch: DecisionNode
        Next decision node for samples where features value did not meet the threshold.
    """
    def __init__(self, feature_i=None, threshold=None,
                 value=None, true_branch=None, false_branch=None):
        self.feature_i = feature_i          # Index for the feature that is tested
        self.threshold = threshold          # Threshold value for feature
        self.value = value                  # Value if the node is a leaf in the tree
        self.true_branch = true_branch      # 'Left' subtree
        self.false_branch = false_branch    # 'Right' subtree


# Super class of RegressionTree and ClassificationTree
class DecisionTree(object):
    """Super class of RegressionTree and ClassificationTree.

    Parameters:
    -----------
    min_samples_split: int
        The minimum number of samples needed to make a split when building a tree.
    min_impurity: float
        The minimum impurity required to split the tree further.
    max_depth: int
        The maximum depth of a tree.
    loss: function
        Loss function that is used for Gradient Boosting models to calculate impurity.
    """
    def __init__(self, min_samples_split=2, min_impurity=1e-7,
                 max_depth=float("inf"), loss=None):
        self.root = None  # Root node in dec. tree
        # Minimum n of samples to justify split
        self.min_samples_split = min_samples_split
        # The minimum impurity to justify split
        self.min_impurity = min_impurity
        # The maximum depth to grow the tree to
        self.max_depth = max_depth
        # Function to calculate impurity (classif.=>info gain, regr=>variance reduct.)
        self._impurity_calculation = None
        # Function to determine prediction of y at leaf
        self._leaf_value_calculation = None
        # If y is one-hot encoded (multi-dim) or not (one-dim)
        self.one_dim = None
        # If Gradient Boost
        self.loss = loss

    def fit(self, X, y, loss=None):
        """ Build decision tree """
        self.one_dim = len(np.shape(y)) == 1
        self.root = self._build_tree(X, y)
        self.loss=None

    def _build_tree(self, X, y, current_depth=0):
        """ Recursive method which builds out the decision tree and splits X and respective y
        on the feature of X which (based on impurity) best separates the data"""

        largest_impurity = 0
        best_criteria = None    # Feature index and threshold
        best_sets = None        # Subsets of the data

        # Check if expansion of y is needed
        if len(np.shape(y)) == 1:
            y = np.expand_dims(y, axis=1)

        # Add y as last column of X
        Xy = np.concatenate((X, y), axis=1)

        n_samples, n_features = np.shape(X)

        if n_samples >= self.min_samples_split and current_depth <= self.max_depth:
            # Calculate the impurity for each feature
            for feature_i in range(n_features):
                # All values of feature_i
                feature_values = np.expand_dims(X[:, feature_i], axis=1)
                unique_values = np.unique(feature_values)

                # Iterate through all unique values of feature column i and
                # calculate the impurity
                for threshold in unique_values:
                    # Divide X and y depending on if the feature value of X at index feature_i
                    # meets the threshold
                    Xy1, Xy2 = divide_on_feature(Xy, feature_i, threshold)

                    if len(Xy1) > 0 and len(Xy2) > 0:
                        # Select the y-values of the two sets
                        y1 = Xy1[:, n_features:]
                        y2 = Xy2[:, n_features:]

                        # Calculate impurity
                        impurity = self._impurity_calculation(y, y1, y2)

                        # If this threshold resulted in a higher information gain than previously
                        # recorded save the threshold value and the feature
                        # index
                        if impurity > largest_impurity:
                            largest_impurity = impurity
                            best_criteria = {"feature_i": feature_i, "threshold": threshold}
                            best_sets = {
                                "leftX": Xy1[:, :n_features],   # X of left subtree
                                "lefty": Xy1[:, n_features:],   # y of left subtree
                                "rightX": Xy2[:, :n_features],  # X of right subtree
                                "righty": Xy2[:, n_features:]   # y of right subtree
                                }

        if largest_impurity > self.min_impurity:
            # Build subtrees for the right and left branches
            true_branch = self._build_tree(best_sets["leftX"], best_sets["lefty"], current_depth + 1)
            false_branch = self._build_tree(best_sets["rightX"], best_sets["righty"], current_depth + 1)
            return DecisionNode(feature_i=best_criteria["feature_i"], threshold=best_criteria[
                                "threshold"], true_branch=true_branch, false_branch=false_branch)

        # We're at leaf => determine value
        leaf_value = self._leaf_value_calculation(y)

        return DecisionNode(value=leaf_value)


    def predict_value(self, x, tree=None):
        """ Do a recursive search down the tree and make a prediction of the data sample by the
            value of the leaf that we end up at """

        if tree is None:
            tree = self.root

        # If we have a value (i.e we're at a leaf) => return value as the prediction
        if tree.value is not None:
            return tree.value

        # Choose the feature that we will test
        feature_value = x[tree.feature_i]

        # Determine if we will follow left or right branch
        branch = tree.false_branch
        if isinstance(feature_value, int) or isinstance(feature_value, float):
            if feature_value >= tree.threshold:
                branch = tree.true_branch
        elif feature_value == tree.threshold:
            branch = tree.true_branch

        # Test subtree
        return self.predict_value(x, branch)

    def predict(self, X):
        """ Classify samples one by one and return the set of labels """
        y_pred = [self.predict_value(sample) for sample in X]
        return y_pred

    def print_tree(self, tree=None, indent=" "):
        """ Recursively print the decision tree """
        if not tree:
            tree = self.root

        # If we're at leaf => print the label
        if tree.value is not None:
            print (tree.value)
        # Go deeper down the tree
        else:
            # Print test
            print ("%s:%s? " % (tree.feature_i, tree.threshold))
            # Print the true scenario
            print ("%sT->" % (indent), end="")
            self.print_tree(tree.true_branch, indent + indent)
            # Print the false scenario
            print ("%sF->" % (indent), end="")
            self.print_tree(tree.false_branch, indent + indent)

class XGBoostRegressionTree(DecisionTree):
    """
    Regression tree for XGBoost
    - Reference -
    http://xgboost.readthedocs.io/en/latest/model.html
    """

    def _split(self, y):
        """ y contains y_true in left half of the middle column and
        y_pred in the right half. Split and return the two matrices """
        col = int(np.shape(y)[1]/2)
        y, y_pred = y[:, :col], y[:, col:]
        return y, y_pred

    def _gain(self, y, y_pred):
        nominator = np.power((y * self.loss.gradient(y, y_pred)).sum(), 2)
        denominator = self.loss.hess(y, y_pred).sum()
        return 0.5 * (nominator / denominator)

    def _gain_by_taylor(self, y, y1, y2):
        # Split
        y, y_pred = self._split(y)
        y1, y1_pred = self._split(y1)
        y2, y2_pred = self._split(y2)

        true_gain = self._gain(y1, y1_pred)
        false_gain = self._gain(y2, y2_pred)
        gain = self._gain(y, y_pred)
        return true_gain + false_gain - gain

    def _approximate_update(self, y):
        # y split into y, y_pred
        y, y_pred = self._split(y)
        # Newton's Method
        gradient = np.sum(y * self.loss.gradient(y, y_pred), axis=0)
        hessian = np.sum(self.loss.hess(y, y_pred), axis=0)
        update_approximation =  gradient / hessian

        return update_approximation

    def fit(self, X, y):
        self._impurity_calculation = self._gain_by_taylor
        self._leaf_value_calculation = self._approximate_update
        super(XGBoostRegressionTree, self).fit(X, y)


class RegressionTree(DecisionTree):
    def _calculate_variance_reduction(self, y, y1, y2):
        var_tot = calculate_variance(y)
        var_1 = calculate_variance(y1)
        var_2 = calculate_variance(y2)
        frac_1 = len(y1) / len(y)
        frac_2 = len(y2) / len(y)

        # Calculate the variance reduction
        variance_reduction = var_tot - (frac_1 * var_1 + frac_2 * var_2)

        return sum(variance_reduction)

    def _mean_of_y(self, y):
        value = np.mean(y, axis=0)
        return value if len(value) > 1 else value[0]

    def fit(self, X, y):
        self._impurity_calculation = self._calculate_variance_reduction
        self._leaf_value_calculation = self._mean_of_y
        super(RegressionTree, self).fit(X, y)

class ClassificationTree(DecisionTree):
    def _calculate_information_gain(self, y, y1, y2):
        # Calculate information gain
        p = len(y1) / len(y)
        entropy = calculate_entropy(y)
        info_gain = entropy - p * \
            calculate_entropy(y1) - (1 - p) * \
            calculate_entropy(y2)

        return info_gain

    def _majority_vote(self, y):
        most_common = None
        max_count = 0
        for label in np.unique(y):
            # Count number of occurences of samples with label
            count = len(y[y == label])
            if count > max_count:
                most_common = label
                max_count = count
        return most_common

    def fit(self, X, y):
        self._impurity_calculation = self._calculate_information_gain
        self._leaf_value_calculation = self._majority_vote
        super(ClassificationTree, self).fit(X, y)

运行主函数:

from __future__ import division, print_function
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
import sys
import os
import sys
sys.path.append("/content/drive/My Drive/learn/ML-From-Scratch/")
# Import helper functions
from mlfromscratch.utils import train_test_split, standardize, accuracy_score
from mlfromscratch.utils import mean_squared_error, calculate_variance, Plot
from mlfromscratch.supervised_learning import ClassificationTree

def main():

    print ("-- Classification Tree --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    clf = ClassificationTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    Plot().plot_in_2d(X_test, y_pred, 
        title="Decision Tree", 
        accuracy=accuracy, 
        legend_labels=data.target_names)


if __name__ == "__main__":
    main()

运行结果:

-- Classification Tree --

Accuracy: 0.9

回归主函数:

from __future__ import division, print_function
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import sys
sys.path.append("/content/drive/My Drive/learn/ML-From-Scratch/")
from mlfromscratch.utils import train_test_split, standardize, accuracy_score
from mlfromscratch.utils import mean_squared_error, calculate_variance, Plot
from mlfromscratch.supervised_learning import RegressionTree

def main():

    print ("-- Regression Tree --")

    # Load temperature data
    data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].values).T
    temp = np.atleast_2d(data["temp"].values).T

    X = standardize(time)        # Time. Fraction of the year [0, 1]
    y = temp[:, 0]  # Temperature. Reduce to one-dim

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

    model = RegressionTree()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    y_pred_line = model.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    mse = mean_squared_error(y_test, y_pred)

    print ("Mean Squared Error:", mse)

    # Plot the results
    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test, y_pred, color='black', s=10)
    plt.suptitle("Regression Tree")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"), loc='lower right')
    plt.savefig("test2.png")
    plt.show()


if __name__ == "__main__":
    main()

结果:

-- Regression Tree --

Mean Squared Error: 9.445229357798167

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-05-13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档