前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习之决策树二-C4.5原理与代码实现

机器学习之决策树二-C4.5原理与代码实现

作者头像
用户7225427
发布2020-09-03 10:21:33
6940
发布2020-09-03 10:21:33
举报
文章被收录于专栏:厚积薄发厚积薄发

决策树之系列二—C4.5原理与代码实现

本文系作者原创,转载请注明出处:https://cloud.tencent.com/developer/article/1691116

ID3算法缺点

它一般会优先选择有较多属性值的Feature,因为属性值多的特征会有相对较大的信息增益,信息增益反映的是,在给定一个条件以后,不确定性减少的程度,

这必然是分得越细的数据集确定性更高,也就是条件熵越小,信息增益越大。为了解决这个问题,C4.5就应运而生,它采用信息增益率来作为选择分支的准则。

C4.5算法原理

信息增益率定义为:

其中,分子为信息增益(信息增益计算可参考上一节ID3的算法原理),分母为属性X的熵。

需要注意的是,增益率准则对可取值数目较少的属性有所偏好。

所以一般这样选取划分属性:选择增益率最高的特征列作为划分属性的依据。

代码实现

与ID3代码实现不同的是:只改变计算香农熵的函数calcShannonEnt,以及选择最优特征索引函数chooseBestFeatureToSplit,具体代码如下:

代码语言:javascript
复制
  1 # -*- coding: utf-8 -*-
  2 """
  3 Created on Thu Aug  2 17:09:34 2018
  4 决策树ID3,C4.5的实现
  5 @author: weixw
  6 """
  7 from math import log
  8 import operator
  9 #原始数据
 10 def createDataSet():
 11     dataSet = [[1, 1, 'yes'],
 12                [1, 1, 'yes'],
 13                [1, 0, 'no'],
 14                [0, 1, 'no'],
 15                [0, 1, 'no']]
 16     labels = ['no surfacing','flippers']   
 17     return dataSet, labels
 18 
 19 #多数表决器
 20 #列中相同值数量最多为结果
 21 def majorityCnt(classList):
 22     classCounts = {}
 23     for value in classList:
 24         if(value not in classCounts.keys()):
 25             classCounts[value] = 0
 26         classCounts[value] +=1
 27     sortedClassCount = sorted(classCounts.iteritems(),key = operator.itemgetter(1),reverse =True)
 28     return sortedClassCount[0][0]
 29         
 30     
 31 #划分数据集
 32 #dataSet:原始数据集
 33 #axis:进行分割的指定列索引
 34 #value:指定列中的值
 35 def splitDataSet(dataSet,axis,value):
 36     retDataSet= []
 37     for featDataVal in dataSet:
 38         if featDataVal[axis] == value:
 39             #下面两行去除某一项指定列的值,很巧妙有没有
 40             reducedFeatVal = featDataVal[:axis]
 41             reducedFeatVal.extend(featDataVal[axis+1:])
 42             retDataSet.append(reducedFeatVal)
 43     return retDataSet
 44 
 45 #计算香农熵
 46 #columnIndex = -1表示获取数据集每一项的最后一列的标签值
 47 #其他表示获取特征列
 48 def calcShannonEnt(columnIndex, dataSet):
 49     #数据集总项数
 50     numEntries = len(dataSet)
 51     #标签计数对象初始化
 52     labelCounts = {}
 53     for featDataVal in dataSet:
 54         #获取数据集每一项的最后一列的标签值
 55         currentLabel = featDataVal[columnIndex]
 56         #如果当前标签不在标签存储对象里,则初始化,然后计数
 57         if currentLabel not in labelCounts.keys():
 58             labelCounts[currentLabel] = 0
 59         labelCounts[currentLabel] += 1
 60     #熵初始化
 61     shannonEnt = 0.0
 62     #遍历标签对象,求概率,计算熵
 63     for key in labelCounts.keys():
 64         prop = labelCounts[key]/float(numEntries)
 65         shannonEnt -= prop*log(prop,2)
 66     return shannonEnt
 67 
 68 
 69 #通过信息增益,选出最优特征列索引(ID3)
 70 def chooseBestFeatureToSplit(dataSet):
 71     #计算特征个数,dataSet最后一列是标签属性,不是特征量
 72     numFeatures = len(dataSet[0])-1
 73     #计算初始数据香农熵
 74     baseEntropy = calcShannonEnt(-1, dataSet)
 75     #初始化信息增益,最优划分特征列索引
 76     bestInfoGain = 0.0
 77     bestFeatureIndex = -1
 78     for i in range(numFeatures):
 79         #获取每一列数据
 80         featList = [example[i] for example in dataSet]
 81         #将每一列数据去重
 82         uniqueVals = set(featList)
 83         newEntropy = 0.0
 84         for value in uniqueVals:
 85             subDataSet = splitDataSet(dataSet,i,value)
 86             #计算条件概率
 87             prob = len(subDataSet)/float(len(dataSet))
 88             #计算条件熵
 89             newEntropy +=prob*calcShannonEnt(-1, subDataSet)
 90         #计算信息增益
 91         infoGain = baseEntropy - newEntropy
 92         if(infoGain > bestInfoGain):
 93             bestInfoGain = infoGain
 94             bestFeatureIndex = i
 95     return bestFeatureIndex
 96 
 97 #通过信息增益率,选出最优特征列索引(C4.5)
 98 def chooseBestFeatureToSplitOfFurther(dataSet):
 99     #计算特征个数,dataSet最后一列是标签属性,不是特征量
100     numFeatures = len(dataSet[0])-1
101     #计算初始数据香农熵H(Y)
102     baseEntropy = calcShannonEnt(-1, dataSet)
103     #初始化信息增益,最优划分特征列索引
104     bestInfoGainRatio = 0.0
105     bestFeatureIndex = -1
106     for i in range(numFeatures):
107         #获取每一特征列香农熵H(X)
108         featEntropy = calcShannonEnt(i, dataSet)
109         #获取每一列数据
110         featList = [example[i] for example in dataSet]
111         #将每一列数据去重
112         uniqueVals = set(featList)
113         newEntropy = 0.0
114         for value in uniqueVals:
115             subDataSet = splitDataSet(dataSet,i,value)
116             #计算条件概率
117             prob = len(subDataSet)/float(len(dataSet))
118             #计算条件熵
119             newEntropy +=prob*calcShannonEnt(-1, subDataSet)
120         #计算信息增益
121         infoGain = baseEntropy - newEntropy
122         #计算信息增益率
123         infoGainRatio = infoGain/float(featEntropy)
124         if(infoGainRatio > bestInfoGainRatio):
125             bestInfoGainRatio = infoGainRatio
126             bestFeatureIndex = i
127     return bestFeatureIndex
128         
129 #决策树创建
130 def createTree(dataSet,labels):
131     #获取标签属性,dataSet最后一列,区别于labels标签名称
132     classList = [example[-1] for example in dataSet]
133     #树极端终止条件判断
134     #标签属性值全部相同,返回标签属性第一项值
135     if classList.count(classList[0]) == len(classList):
136         return classList[0]
137     #没有特征,只有标签列(1列)
138     if len(dataSet[0]) == 1:
139         #返回实例数最大的类
140         return majorityCnt(classList)
141 #    #获取最优特征列索引ID3
142 #    bestFeatureIndex = chooseBestFeatureToSplit(dataSet)
143     #获取最优特征列索引C4.5
144     bestFeatureIndex = chooseBestFeatureToSplitOfFurther(dataSet)
145     #获取最优索引对应的标签名称
146     bestFeatureLabel = labels[bestFeatureIndex]
147     #创建根节点
148     myTree = {bestFeatureLabel:{}}
149     #去除最优索引对应的标签名,使labels标签能正确遍历
150     del(labels[bestFeatureIndex])
151     #获取最优列
152     bestFeature = [example[bestFeatureIndex] for example in dataSet]
153     uniquesVals = set(bestFeature)
154     for value in uniquesVals:
155         #子标签名称集合
156         subLabels = labels[:]
157         #递归
158         myTree[bestFeatureLabel][value] = createTree(splitDataSet(dataSet,bestFeatureIndex,value),subLabels)
159     return myTree
160 
161 #获取分类结果
162 #inputTree:决策树字典
163 #featLabels:标签列表
164 #testVec:测试向量  例如:简单实例下某一路径 [1,1]  => yes(树干值组合,从根结点到叶子节点)
165 def classify(inputTree,featLabels,testVec):
166     #获取根结点名称,将dict转化为list
167     firstSide = list(inputTree.keys())
168     #根结点名称String类型
169     firstStr = firstSide[0]
170     #获取根结点对应的子节点
171     secondDict = inputTree[firstStr]
172     #获取根结点名称在标签列表中对应的索引
173     featIndex = featLabels.index(firstStr)
174     #由索引获取向量表中的对应值
175     key = testVec[featIndex]
176     #获取树干向量后的对象
177     valueOfFeat = secondDict[key]
178     #判断是子结点还是叶子节点:子结点就回调分类函数,叶子结点就是分类结果
179     #if type(valueOfFeat).__name__=='dict': 等价 if isinstance(valueOfFeat, dict):
180     if isinstance(valueOfFeat, dict):
181         classLabel = classify(valueOfFeat,featLabels,testVec)
182     else:
183         classLabel = valueOfFeat
184     return classLabel
185 
186 
187 #将决策树分类器存储在磁盘中,filename一般保存为txt格式
188 def storeTree(inputTree,filename):
189     import pickle
190     fw = open(filename,'wb+')
191     pickle.dump(inputTree,fw)
192     fw.close()
193 #将瓷盘中的对象加载出来,这里的filename就是上面函数中的txt文件    
194 def grabTree(filename):
195     import pickle
196     fr = open(filename,'rb')
197     return pickle.load(fr)
198     
199     
200  
代码语言:javascript
复制
  1 '''
  2 Created on Oct 14, 2010
  3 
  4 @author: Peter Harrington
  5 '''
  6 import matplotlib.pyplot as plt
  7 
  8 decisionNode = dict(boxstyle="sawtooth", fc="0.8")
  9 leafNode = dict(boxstyle="round4", fc="0.8")
 10 arrow_args = dict(arrowstyle="<-")
 11 
 12 #获取树的叶子节点
 13 def getNumLeafs(myTree):
 14     numLeafs = 0
 15     #dict转化为list
 16     firstSides = list(myTree.keys())
 17     firstStr = firstSides[0]
 18     secondDict = myTree[firstStr]
 19     for key in secondDict.keys():
 20         #判断是否是叶子节点(通过类型判断,子类不存在,则类型为str;子类存在,则为dict)
 21         if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
 22             numLeafs += getNumLeafs(secondDict[key])
 23         else:   numLeafs +=1
 24     return numLeafs
 25 
 26 #获取树的层数
 27 def getTreeDepth(myTree):
 28     maxDepth = 0
 29     #dict转化为list
 30     firstSides = list(myTree.keys())
 31     firstStr = firstSides[0]
 32     secondDict = myTree[firstStr]
 33     for key in secondDict.keys():
 34         if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
 35             thisDepth = 1 + getTreeDepth(secondDict[key])
 36         else:   thisDepth = 1
 37         if thisDepth > maxDepth: maxDepth = thisDepth
 38     return maxDepth
 39 
 40 def plotNode(nodeTxt, centerPt, parentPt, nodeType):
 41     createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
 42              xytext=centerPt, textcoords='axes fraction',
 43              va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
 44     
 45 def plotMidText(cntrPt, parentPt, txtString):
 46     xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
 47     yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
 48     createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
 49 
 50 def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
 51     numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
 52     depth = getTreeDepth(myTree)
 53     firstSides = list(myTree.keys())
 54     firstStr = firstSides[0] #the text label for this node should be this         
 55     cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
 56     plotMidText(cntrPt, parentPt, nodeTxt)
 57     plotNode(firstStr, cntrPt, parentPt, decisionNode)
 58     secondDict = myTree[firstStr]
 59     plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
 60     for key in secondDict.keys():
 61         if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
 62             plotTree(secondDict[key],cntrPt,str(key))        #recursion
 63         else:   #it's a leaf node print the leaf node
 64             plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
 65             plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
 66             plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
 67     plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
 68 #if you do get a dictonary you know it's a tree, and the first element will be another dict
 69 #绘制决策树
 70 def createPlot(inTree):
 71     fig = plt.figure(1, facecolor='white')
 72     fig.clf()
 73     axprops = dict(xticks=[], yticks=[])
 74     createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
 75     #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
 76     plotTree.totalW = float(getNumLeafs(inTree))
 77     plotTree.totalD = float(getTreeDepth(inTree))
 78     plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
 79     plotTree(inTree, (0.5,1.0), '')
 80     plt.show()
 81 
 82 #绘制树的根节点和叶子节点(根节点形状:长方形,叶子节点:椭圆形)
 83 #def createPlot():
 84 #    fig = plt.figure(1, facecolor='white')
 85 #    fig.clf()
 86 #    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
 87 #    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
 88 #    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
 89 #    plt.show()
 90 
 91 def retrieveTree(i):
 92     listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
 93                   {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
 94                   ]
 95     return listOfTrees[i]
 96 
 97 #thisTree = retrieveTree(0)
 98 #createPlot(thisTree)
 99 #createPlot() 
100 #myTree = retrieveTree(0)
101 #numLeafs =getNumLeafs(myTree)
102 #treeDepth =getTreeDepth(myTree)
103 #print(u"叶子节点数目:%d"% numLeafs)
104 #print(u"树深度:%d"%treeDepth)
代码语言:javascript
复制
 1 # -*- coding: utf-8 -*-
 2 """
 3 Created on Fri Aug  3 19:52:10 2018
 4 
 5 @author: weixw
 6 """
 7 import myTrees as mt
 8 import treePlotter as tp
 9 #测试
10 dataSet, labels = mt.createDataSet()
11 #copy函数:新开辟一块内存,然后将list的所有值复制到新开辟的内存中
12 labels1 = labels.copy()
13 #createTree函数中将labels1的值改变了,所以在分类测试时不能用labels1
14 myTree = mt.createTree(dataSet,labels1)
15 #保存树到本地
16 mt.storeTree(myTree,'myTree.txt')
17 #在本地磁盘获取树
18 myTree = mt.grabTree('myTree.txt')
19 print(u"采用C4.5算法的决策树结果")
20 print (u"决策树结构:%s"%myTree)
21 #绘制决策树
22 print(u"绘制决策树:")
23 tp.createPlot(myTree)
24 numLeafs =tp.getNumLeafs(myTree)
25 treeDepth =tp.getTreeDepth(myTree)
26 print(u"叶子节点数目:%d"% numLeafs)
27 print(u"树深度:%d"%treeDepth)
28 #测试分类 简单样本数据3列
29 labelResult =mt.classify(myTree,labels,[1,1])
30 print(u"[1,1] 测试结果为:%s"%labelResult)
31 labelResult =mt.classify(myTree,labels,[1,0])
32 print(u"[1,0] 测试结果为:%s"%labelResult)

运行结果

不要让懒惰占据你的大脑,不要让妥协拖垮你的人生。青春就是一张票,能不能赶上时代的快车,你的步伐掌握在你的脚下。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-08-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 决策树之系列二—C4.5原理与代码实现
    • ID3算法缺点
      • C4.5算法原理
        • 代码实现
          • 运行结果
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档