前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >小白学PyTorch | 4 构建模型三要素与权重初始化

小白学PyTorch | 4 构建模型三要素与权重初始化

作者头像
机器学习炼丹术
发布2020-09-03 16:41:29
1.3K0
发布2020-09-03 16:41:29
举报

文章目录:

  • 1 模型三要素
  • 2 参数初始化
  • 3 完整运行代码
  • 4 尺寸计算与参数计算

这篇文章内容不多,比较基础,里面的代码块可以复制到本地进行实践,以加深理解。

喜欢的话,可以给公众号加一个星标,点点在看,这是对我最大的支持

1 模型三要素

三要素其实很简单

  1. 必须要继承nn.Module这个类,要让PyTorch知道这个类是一个Module
  2. 在__init__(self)中设置好需要的组件,比如conv,pooling,Linear,BatchNorm等等
  3. 最后在forward(self,x)中用定义好的组件进行组装,就像搭积木,把网络结构搭建出来,这样一个模型就定义好了

我们来看一个例子:先看__init__(self)函数

代码语言:javascript
复制
def __init__(self):
 super(Net,self).__init__()
 self.conv1 = nn.Conv2d(3,6,5)
 self.pool1 = nn.MaxPool2d(2,2)
 self.conv2 = nn.Conv2d(6,16,5)
 self.pool2 = nn.MaxPool2d(2,2)
 self.fc1 = nn.Linear(16*5*5,120)
 self.fc2 = nn.Linear(120,84)
 self.fc3 = nn.Linear(84,10)

第一行是初始化,往后定义了一系列组件。nn.Conv2d就是一般图片处理的卷积模块,然后池化层,全连接层等等。

定义完这些定义forward函数

代码语言:javascript
复制
def forward(self,x):
 x = self.pool1(F.relu(self.conv1(x)))
 x = self.pool2(F.relu(self.conv2(x)))
 x = x.view(-1,16*5*5)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

x为模型的输入,第一行表示x经过conv1,然后经过激活函数relu,然后经过pool1操作 第三行表示对x进行reshape,为后面的全连接层做准备

至此,对一个模型的定义完毕,如何使用呢?

例如:

代码语言:javascript
复制
net = Net()
outputs = net(inputs)

其实net(inputs),就是类似于使用了net.forward(inputs)这个函数。

2 参数初始化

简单地说就是设定什么层用什么初始方法,初始化的方法会在torch.nn.init中

话不多说,看一个案例:

代码语言:javascript
复制
# 定义权值初始化
def initialize_weights(self):
 for m in self.modules():
  if isinstance(m,nn.Conv2d):
   torch.nn.init.xavier_normal_(m.weight.data)
   if m.bias is not None:
    m.bias.data.zero_()
  elif isinstance(m,nn.BatchNorm2d):
   m.weight.data.fill_(1)
   m.bias.data.zero_()
  elif isinstance(m,nn.Linear):
   torch.nn.init.normal_(m.weight.data,0,0.01)
   # m.weight.data.normal_(0,0.01)
   m.bias.data.zero_()

这段代码的基本流程就是,先从self.modules()中遍历每一层,然后判断更曾属于什么类型,是否是Conv2d,是否是BatchNorm2d,是否是Linear的,然后根据不同类型的层,设定不同的权值初始化方法,例如Xavier,kaiming,normal_等等。kaiming也是MSRA初始化,是何恺明大佬在微软亚洲研究院的时候,因此得名。

上面代码中用到了self.modules(),这个是什么东西呢?

代码语言:javascript
复制
# self.modules的源码
def modules(self):
 for name,module in self.named_modules():
  yield module

功能就是:能依次返回模型中的各层,yield是让一个函数可以像迭代器一样可以用for循环不断从里面遍历(可能说的不太明确)。

3 完整运行代码

我们用下面的例子来更深入的理解self.modules(),同时也把上面的内容都串起来(下面的代码块可以运行):

代码语言:javascript
复制
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                torch.nn.init.xavier_normal_(m.weight.data)
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                torch.nn.init.normal_(m.weight.data, 0, 0.01)
                # m.weight.data.normal_(0,0.01)
                m.bias.data.zero_()

net = Net()
net.initialize_weights()
print(net.modules())
for m in net.modules():
    print(m)

运行结果:

代码语言:javascript
复制
# 这个是print(net.modules())的输出
<generator object Module.modules at 0x0000023BDCA23258>
# 这个是第一次从net.modules()取出来的东西,是整个网络的结构
Net(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
# 从net.modules()第二次开始取得东西就是每一层了
Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Linear(in_features=400, out_features=120, bias=True)
Linear(in_features=120, out_features=84, bias=True)
Linear(in_features=84, out_features=10, bias=True)

其中呢,并不是每一层都有偏执bias的,有的卷积层可以设置成不要bias的,所以对于卷积网络参数的初始化,需要判断一下是否有bias,(不过我好像记得bias默认初始化为0?不确定,有知道的朋友可以交流)

代码语言:javascript
复制
torch.nn.init.xavier_normal(m.weight.data)
if m.bias is not None:
 m.bias.data.zero_()

上面代码表示用xavier_normal方法对该层的weight初始化,并判断是否存在偏执bias,若存在,将bias初始化为0。

4 尺寸计算与参数计算

我们把上面的主函数部分改成:

代码语言:javascript
复制
net = Net()
net.initialize_weights()
layers = {}
for m in net.modules():
    if isinstance(m,nn.Conv2d):
        print(m)
        break

这里的输出m就是:

代码语言:javascript
复制
Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))

这个卷积层,就是我们设置的第一个卷积层,含义就是:输入3通道,输出6通道,卷积核

5\times 5

,步长1,padding=0.

【问题1:输入特征图和输出特征图的尺寸计算】

之前的文章也讲过这个了,

output = \frac{input+2\times padding -kernel}{stride}+1

用代码来验证一下这个公式:

代码语言:javascript
复制
net = Net()
net.initialize_weights()
input = torch.ones((16,3,10,10))
output = net.conv1(input)
print(input.shape)
print(output.shape)

初始结果:

代码语言:javascript
复制
torch.Size([16, 3, 10, 10])
torch.Size([16, 6, 6, 6])

第一个维度上batch,第二个是通道channel,第三个和第四个是图片(特征图)的尺寸。

\frac{10+2\times 0-5}{1}+1=6

算出来的结果没毛病。

【问题2:这个卷积层中有多少的参数?】输入通道是3通道的,输出是6通道的,卷积核是

5\times 5

的,所以理解为6个

3\times 5\times 5

的卷积核,所以不考虑bias的话,参数量是

3\times 5\times 5\times 6=450

,考虑bais的话,就每一个卷积核再增加一个偏置值。(这是一个一般人会忽略的知识点欸)

下面用代码来验证:

代码语言:javascript
复制
net = Net()
net.initialize_weights()
for m in net.modules():
    if isinstance(m,nn.Conv2d):
        print(m)
        print(m.weight.shape)
        print(m.bias.shape)
        break

输出结果是:

代码语言:javascript
复制
Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
torch.Size([6, 3, 5, 5])
torch.Size([6])

都和预料中一样。

- END -

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-08-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习炼丹术 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 模型三要素
  • 2 参数初始化
  • 3 完整运行代码
  • 4 尺寸计算与参数计算
相关产品与服务
批量计算
批量计算(BatchCompute,Batch)是为有大数据计算业务的企业、科研单位等提供高性价比且易用的计算服务。批量计算 Batch 可以根据用户提供的批处理规模,智能地管理作业和调动其所需的最佳资源。有了 Batch 的帮助,您可以将精力集中在如何分析和处理数据结果上。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档