前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用关键点进行小目标检测

使用关键点进行小目标检测

作者头像
BBuf
发布2020-09-10 16:22:27
8520
发布2020-09-10 16:22:27
举报
文章被收录于专栏:GiantPandaCVGiantPandaCV

【GiantPandaCV导语】本文是笔者出于兴趣搞了一个小的库,主要是用于定位红外小目标。由于其具有尺度很小的特点,所以可以尝试用点的方式代表其位置。本文主要采用了回归和heatmap两种方式来回归关键点,是一个很简单基础的项目,代码量很小,可供新手学习。

1. 数据来源

数据集:数据来源自小武,经过小武的授权使用,但不会公开。本项目只用了其中很少一部分共108张图片。

标注工具:https://github.com/pprp/landmark_annotation

标注工具也可以在GiantPandaCV公众号后台回复“landmark”关键字获取

部分样例展示

上图是数据集中的两张图片,红圈代表对应的目标,标注的时候只需要在其中心点一下即可得到该点对应的横纵坐标。

该数据集有一个特点,每张图只有一个目标(不然没法用简单的方法回归),多余一个目标的图片被剔除了。

代码语言:javascript
复制
1
0.42 0.596

以上是一个标注文件的例子,1.jpg对应1.txt

2. 回归确定关键点

回归确定关键点比较简单,网络部分采用手工构建的一个两层的小网络,训练采用的是MSELoss。

这部分代码在:https://github.com/pprp/SimpleCVReproduction/tree/master/simple_keypoint/regression

2.1 数据加载

数据的组织比较简单,按照以下格式组织:

代码语言:javascript
复制
- data
	- images
		- 1.jpg
		- 2.jpg
		- ...
	- labels
		- 1.txt
		- 2.txt
		- ...

重写一下Dataset类,用于加载数据集。

代码语言:javascript
复制
class KeyPointDatasets(Dataset):
    def __init__(self, root_dir="./data", transforms=None):
        super(KeyPointDatasets, self).__init__()
        self.img_path = os.path.join(root_dir, "images")
        # self.txt_path = os.path.join(root_dir, "labels")

        self.img_list = glob.glob(os.path.join(self.img_path, "*.jpg"))
        self.txt_list = [item.replace(".jpg", ".txt").replace(
            "images", "labels") for item in self.img_list]

        if transforms is not None:
            self.transforms = transforms

    def __getitem__(self, index):
        img = self.img_list[index]
        txt = self.txt_list[index]

        img = cv2.imread(img)

        if self.transforms:
            img = self.transforms(img)

        label = []

        with open(txt, "r") as f:
            for i, line in enumerate(f):
                if i == 0:
                    # 第一行
                    num_point = int(line.strip())
                else:
                    x1, y1 = [(t.strip()) for t in line.split()]
                    # range from 0 to 1
                    x1, y1 = float(x1), float(y1)

                    tmp_label = (x1, y1)
                    label.append(tmp_label)

        return img, torch.tensor(label[0])

    def __len__(self):
        return len(self.img_list)

    @staticmethod
    def collect_fn(batch):
        imgs, labels = zip(*batch)
        return torch.stack(imgs, 0), torch.stack(labels, 0)

返回的结果是图片和对应坐标位置。

2.2 网络模型

代码语言:javascript
复制
import torch
import torch.nn as nn

class KeyPointModel(nn.Module):
    def __init__(self):
        super(KeyPointModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 3, 1, 1)
        self.bn1 = nn.BatchNorm2d(6)
        self.relu1 = nn.ReLU(True)
        self.maxpool1 = nn.MaxPool2d((2, 2))

        self.conv2 = nn.Conv2d(6, 12, 3, 1, 1)
        self.bn2 = nn.BatchNorm2d(12)
        self.relu2 = nn.ReLU(True)
        self.maxpool2 = nn.MaxPool2d((2, 2))

        self.gap = nn.AdaptiveMaxPool2d(1)
        self.classifier = nn.Sequential(
            nn.Linear(12, 2),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)
        x = self.maxpool1(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.maxpool2(x)

        x = self.gap(x)
        x = x.view(x.shape[0], -1)
        return self.classifier(x)

其结构就是卷积+pooling+卷积+pooling+global average pooling+Linear,返回长度为2的tensor。

2.3 训练

代码语言:javascript
复制
def train(model, epoch, dataloader, optimizer, criterion):
    model.train()
    for itr, (image, label) in enumerate(dataloader):
        bs = image.shape[0]
        output = model(image)
        loss = criterion(output, label)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if itr % 4 == 0:
            print("epoch:%2d|step:%04d|loss:%.6f" % (epoch, itr, loss.item()/bs))
            vis.plot_many_stack({"train_loss": loss.item()*100/bs})
            
total_epoch = 300
bs = 10
########################################
transforms_all = transforms.Compose([
    transforms.ToPILImage(),
    transforms.Resize((360,480)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.4372, 0.4372, 0.4373],
                         std=[0.2479, 0.2475, 0.2485])
])

datasets = KeyPointDatasets(root_dir="./data", transforms=transforms_all)

data_loader = DataLoader(datasets, shuffle=True,
                         batch_size=bs, collate_fn=datasets.collect_fn)

model = KeyPointModel()

optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
# criterion = torch.nn.SmoothL1Loss()
criterion = torch.nn.MSELoss()
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                            step_size=30,
                                            gamma=0.1)

for epoch in range(total_epoch):
    train(model, epoch, data_loader, optimizer, criterion)
    loss = test(model, epoch, data_loader, criterion)

    if epoch % 10 == 0:
        torch.save(model.state_dict(),
                   "weights/epoch_%d_%.3f.pt" % (epoch, loss*1000))

loss部分使用Smooth L1 loss或者MSE loss均可。

MSE Loss:

loss(x,y)=\frac{1}{n}\sum(x_i-y_i)^2

Smooth L1 Loss:

smooth_{L_1}(x)= \begin{cases} 0.5x^2 & if |x|<1 \\ |x|-0.5 & otherwise \end{cases}

2.4 测试结果

3. heatmap确定关键点

这部分代码很多参考了CenterNet,不过曾经尝试CenterNet中的loss在这个问题上收敛效果不好,所以参考了kaggle人脸关键点定位的解决方法,发现使用简单的MSELoss效果就很好。

3.1 数据加载

这部分和CenterNet构建heatmap的过程类似,不过半径的确定是人工的。因为数据集中的目标都比较小,半径的范围最大不超过半径为30个像素的圆。

代码语言:javascript
复制
class KeyPointDatasets(Dataset):
    def __init__(self, root_dir="./data", transforms=None):
        super(KeyPointDatasets, self).__init__()

        self.down_ratio = 1
        self.img_w = 480 // self.down_ratio
        self.img_h = 360 // self.down_ratio

        self.img_path = os.path.join(root_dir, "images")

        self.img_list = glob.glob(os.path.join(self.img_path, "*.jpg"))
        self.txt_list = [item.replace(".jpg", ".txt").replace(
            "images", "labels") for item in self.img_list]

        if transforms is not None:
            self.transforms = transforms

    def __getitem__(self, index):
        img = self.img_list[index]
        txt = self.txt_list[index]

        img = cv2.imread(img)

        if self.transforms:
            img = self.transforms(img)

        label = []

        with open(txt, "r") as f:
            for i, line in enumerate(f):
                if i == 0:
                    # 第一行
                    num_point = int(line.strip())
                else:
                    x1, y1 = [(t.strip()) for t in line.split()]
                    # range from 0 to 1
                    x1, y1 = float(x1), float(y1)
                    cx, cy = x1 * self.img_w, y1 * self.img_h
                    heatmap = np.zeros((self.img_h, self.img_w))
                    draw_umich_gaussian(heatmap, (cx, cy), 30)
        return img, torch.tensor(heatmap).unsqueeze(0)

    def __len__(self):
        return len(self.img_list)

    @staticmethod
    def collect_fn(batch):
        imgs, labels = zip(*batch)
        return torch.stack(imgs, 0), torch.stack(labels, 0)

核心函数是draw_umich_gaussian,具体如下:

代码语言:javascript
复制
def gaussian2D(shape, sigma=1):
    m, n = [(ss - 1.) / 2. for ss in shape]
    y, x = np.ogrid[-m:m + 1, -n:n + 1]
    h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
    h[h < np.finfo(h.dtype).eps * h.max()] = 0
    # 限制最小的值
    return h

def draw_umich_gaussian(heatmap, center, radius, k=1):
    diameter = 2 * radius + 1
    gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6)
    # 一个圆对应内切正方形的高斯分布
    x, y = int(center[0]), int(center[1])
    width, height = heatmap.shape
    left, right = min(x, radius), min(width - x, radius + 1)
    top, bottom = min(y, radius), min(height - y, radius + 1)
    masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
    masked_gaussian = gaussian[radius - top:radius +
                               bottom, radius - left:radius + right]
    if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:  # TODO debug
        np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
        # 将高斯分布覆盖到heatmap上,取最大,而不是叠加
    return heatmap

sigma参数直接沿用了CenterNet中的设置,没有调节这个超参数。

3.2 网络结构

网络结构参考了知乎上一个复现YOLOv3中提到的模块,Sematic Embbed Block(SEB)用于上采样部分,将来自低分辨率的特征图进行上采样,然后使用3x3卷积和1x1卷积统一通道个数,最后将低分辨率特征图和高分辨率特征图相乘得到融合结果。

代码语言:javascript
复制
class SematicEmbbedBlock(nn.Module):
    def __init__(self, high_in_plane, low_in_plane, out_plane):
        super(SematicEmbbedBlock, self).__init__()
        self.conv3x3 = nn.Conv2d(high_in_plane, out_plane, 3, 1, 1)
        self.upsample = nn.UpsamplingBilinear2d(scale_factor=2)

        self.conv1x1 = nn.Conv2d(low_in_plane, out_plane, 1)

    def forward(self, high_x, low_x):
        high_x = self.upsample(self.conv3x3(high_x))
        low_x = self.conv1x1(low_x)
        return high_x * low_x


class KeyPointModel(nn.Module):
    """
    downsample ratio=2
    """

    def __init__(self):
        super(KeyPointModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 3, 1, 1)
        self.bn1 = nn.BatchNorm2d(6)
        self.relu1 = nn.ReLU(True)
        self.maxpool1 = nn.MaxPool2d((2, 2))

        self.conv2 = nn.Conv2d(6, 12, 3, 1, 1)
        self.bn2 = nn.BatchNorm2d(12)
        self.relu2 = nn.ReLU(True)
        self.maxpool2 = nn.MaxPool2d((2, 2))

        self.conv3 = nn.Conv2d(12, 20, 3, 1, 1)
        self.bn3 = nn.BatchNorm2d(20)
        self.relu3 = nn.ReLU(True)
        self.maxpool3 = nn.MaxPool2d((2, 2))

        self.conv4 = nn.Conv2d(20, 40, 3, 1, 1)
        self.bn4 = nn.BatchNorm2d(40)
        self.relu4 = nn.ReLU(True)

        self.seb1 = SematicEmbbedBlock(40, 20, 20)
        self.seb2 = SematicEmbbedBlock(20, 12, 12)
        self.seb3 = SematicEmbbedBlock(12, 6, 6)

        self.heatmap = nn.Conv2d(6, 1, 1)

    def forward(self, x):
        x1 = self.conv1(x)
        x1 = self.bn1(x1)
        x1 = self.relu1(x1)

        m1 = self.maxpool1(x1)

        x2 = self.conv2(m1)
        x2 = self.bn2(x2)
        x2 = self.relu2(x2)

        m2 = self.maxpool2(x2)

        x3 = self.conv3(m2)
        x3 = self.bn3(x3)
        x3 = self.relu3(x3)

        m3 = self.maxpool3(x3)

        x4 = self.conv4(m3)
        x4 = self.bn4(x4)
        x4 = self.relu4(x4)

        up1 = self.seb1(x4, x3)
        up2 = self.seb2(up1, x2)
        up3 = self.seb3(up2, x1)

        out = self.heatmap(up3)
        return out

网络模型也是自己写的小网络,用了四个卷积层,三个池化层,然后进行了三次上采样。最终输出分辨率和输入分辨率相同。

3.3 训练过程

训练过程和基于回归的方法几乎一样,代码如下:

代码语言:javascript
复制
datasets = KeyPointDatasets(root_dir="./data", transforms=transforms_all)

data_loader = DataLoader(datasets, shuffle=True,
                         batch_size=bs, collate_fn=datasets.collect_fn)

model = KeyPointModel()

if torch.cuda.is_available():
    model = model.cuda()

optimizer = torch.optim.Adam(model.parameters(), lr=3e-3)
criterion = torch.nn.MSELoss()  # compute_loss
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                step_size=30,
                                                gamma=0.1)

for epoch in range(total_epoch):
    train(model, epoch, data_loader, optimizer, criterion, scheduler)
    loss = test(model, epoch, data_loader, criterion)

    if epoch % 5 == 0:
        torch.save(model.state_dict(),
                   "weights/epoch_%d_%.3f.pt" % (epoch, loss*10000))

用的是MSELoss进行监督,训练曲线如下:

训练过程中的loss曲线

3.4 测试过程

测试过程和CenterNet的推理过程一致,也用到了3x3的maxpooling来筛选极大值点

代码语言:javascript
复制
for iter, (image, label) in enumerate(dataloader):
    # print(image.shape)
    bs = image.shape[0]
    hm = model(image)
    hm = _nms(hm)
    hm = hm.detach().numpy()

    for i in range(bs):
        hm = hm[i]
        hm = np.maximum(hm, 0)
        hm = hm/np.max(hm)
        hm = normalization(hm)
        hm = np.uint8(255 * hm)
        hm = hm[0]
        # heatmap = torch.sigmoid(heatmap)
        # hm = cv2.cvtColor(hm, cv2.COLOR_RGB2BGR)
        hm = cv2.applyColorMap(hm, cv2.COLORMAP_JET)
        cv2.imwrite("./test_output/output_%d_%d.jpg" % (iter, i), hm)
        cv2.waitKey(0)

以上的nms和topk代码都在CenterNet系列最后一篇讲过了。这里直接对模型输出结果使用nms,然后进行可视化,结果如下:

放大结果

上图中白色的点就是目标位置,为了更形象的查看结果,detect.py部分负责可视化。

3.5 可视化

可视化的问题经常遇见,比如CAM、Grad CAM等可视化特征图的时候就会碰到。以下是可视化的一个简单的方法(参考了CSDN的一位博主的方案,具体链接因太过久远找不到了)。

可视化流程

具体实现代码如下:

代码语言:javascript
复制
def normalization(data):
    _range = np.max(data) - np.min(data)
    return (data - np.min(data)) / _range

heatmap = model(img_tensor_list)
heatmap = heatmap.squeeze().cpu()

for i in range(bs):
    img_path = img_list[i]
    img = cv2.imread(img_path)
    img = cv2.resize(img, (480, 360))
    single_map = heatmap[i]
    hm = single_map.detach().numpy()
    hm = np.maximum(hm, 0)
    hm = hm/np.max(hm)
    hm = normalization(hm)
    hm = np.uint8(255 * hm)
    hm = cv2.applyColorMap(hm, cv2.COLORMAP_JET)
    hm = cv2.resize(hm, (480, 360))
    superimposed_img = hm * 0.2 + img
    coord_x, coord_y = landmark_coord[i]
    cv2.circle(superimposed_img, (int(coord_x), int(coord_y)), 2, (0, 0, 0), thickness=-1)
    cv2.imwrite("./output2/%s_out.jpg" % (img_name_list[i]), superimposed_img)

注意通过处理以后的hm和原图叠加的时候0.2只是一个参考值,这个值既不会影响原图显示又能将heatmap中重点关注的位置可视化出来。

结果如下:

可视化结果

可以看到,定位结果要比回归更准一些,图中黑色点是获取到最终坐标的位置,几乎和目标是重叠的状态,效果比较理想。

4. 总结

笔者做这个小项目初心是想搞清楚如何用关键点进行定位的,关键点被用在很多领域比如人脸关键点定位、车牌定位、人体姿态检测、目标检测等等领域。当时用小武的数据的时候,发现这个数据集的特点就是目标很小,比较适合用关键点来做。之后又开始陆陆续续看CenterNet源码,借鉴了其中很多代码,这才完成了这个小项目。

由于本人水平有限,可能使用heatmap进行关键点定位的方式有些地方并不合理,是东拼西凑而成的,如果有建议可以在下方添加笔者微信。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-09-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 GiantPandaCV 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 数据来源
  • 2. 回归确定关键点
    • 2.1 数据加载
      • 2.2 网络模型
        • 2.3 训练
          • 2.4 测试结果
          • 3. heatmap确定关键点
            • 3.1 数据加载
              • 3.2 网络结构
                • 3.3 训练过程
                  • 3.4 测试过程
                    • 3.5 可视化
                    • 4. 总结
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档