特征的挖掘,是一个 算法工程师 or 数据挖掘工程师,最最最基本的能力。实际业务中,许多数时候数据源和建模目标都是确定的,这时候特征工程几乎就决定了最终模型的业务效果。即使是表示学习横行的当下,在风控和推荐系统中依然大量的使用着手工的特征进行建模。本文将介绍机器学习中的2大类特征深入挖掘方法(特征聚合&特征交叉),以及其中35种特征衍生方案。希望能为对此处经验较少的读者提供一些帮助。
通过一个简单的小漫画,来看看机器学习&数据挖掘中的特征工程。
背景 特征生成 特征聚合 特征交叉 总结 书籍推荐
特征生成,即基础的特征构造。通常只需从平台数据库或数据仓库中,通过SQL(结构化查询语言)语句,根据确定下来的样本标识直接提取即可。然而直接用通过简单匹配得到的变量进行建模,其效果通常较差。在数据源与数据质量确定的情况下,特征工程将极大程度上决定评分卡模型的效果,因此特征工程是建模人员的核心能力之一。特征工程包括特征生成与特征变换。
本文主要介绍其中的特征生成。即如何深入挖掘特征的信息。
用于预测的特征的原始变量,必须是在模型开发样本和将来模型实施时均可观察到的信息。特征的预测能力主要来源于它们与目标变量的相关性(Correlation)和逻辑因果关系。传统的特征提炼主要靠建模人员的直觉、长期经验的积累和数据挖掘技术的应用。此外,还有一些通过表示学习自动抽取关键特征的技术,如神经网络等模型。本文不介绍这些内容,感兴趣的读者可以参考小白书《智能风控:原理、算法与工程实践》中的案例(如FM特征二阶交叉、LSTM序列挖掘、GBDT+LR特征局部交叉等)。
特征工程=特征提取+特征衍生+特征编码+特征筛选
这篇文章不会去介绍的内容包括:数据源分类、频次统计、时长统计、归一化、one-hot编码、WOE编码、过滤式、嵌入式、包裹式 特征筛选等内容。感兴趣的朋友可以参考一下书中的内容。小黑书对这一块做了比较详细地介绍,也确定了基本的流程与架构。
本文的主要的目的是,为 对如何深入挖掘变量感到迷茫的读者,提供一个技术框架与思考方向。
接下来开始介绍第一种特征挖掘的方法,叫作特征聚合,即将每个样本的变量通过各种运算,将单个特征的多个时间节点取值进行聚合的操作。特征聚合是传统评分卡建模的主要特征构造方法。本节为读者介绍业内实用效果较好的35种基于时间序列进行特征聚合的方法。
首先要提到的是,为了方便读者使用,我将本文用到的所有聚合函数写成了一个多进程版本的衍生函数,如果读者有需要可以跳转到代码块自取。他的调用方法非常简单。如下:
#读取数据
data = pd.read_excel('textdata.xlsx')
#指定参与衍生的变量名
FEATURE_LIST = ['ft','gt']
#指定聚合月份
P_LIST = [3,6]
#调用变量衍生函数
gen = feature_generation(data, FEATURE_LIST, P_LIST)
df = gen.fit_generate()
读到这里可能有的同学一头雾水。接下来详细的剖析一下这35种特征衍生方案。
举一个简单的例子,现在计算每个用户额度使用率,记为特征ft ,按照时间轴以月份p为切片展开,得到申请前30天内的额度使用率,申请前30天至60天内的额度使用率,申请前60天至90天内的额度使用率,…,申请前330天至360天内的额度使用率,于是得到相当于一个用户的12个特征,如图所示。
可以根据这个时间序列进行基于经验的人工特征衍生,例如设计一个函数,计算最近p个月特征值大于0的月份数。
1)计算最近p个月特征inv大于0的月份数。
def Num(inv, p):
df = data.loc[:,inv+'1':inv+str(p)]
auto_value = np.where(df>0,1,0).sum(axis=1)
return inv+'_num'+str(p), auto_value
之所以要用p和inv来代替月份和特征名,是因为在工业界通常都是对高维特征进行批量处理。所有设计的函数最好要有足够高的灵活性,能兼容特征和月份的灵活指定。对于函数Num来说,传入不同的inv取值,会对不同的特征进行计算,而指定不同的p值,就会对不同的月份做聚合。因此只需要遍历每一个inv和每一种p的取值,就可以衍生出更深层次的特征。
最下面有统一的代码,不过为了帮助大家掌握规律,又举了3个其中的例子。
2)计算最近p个月特征inv等于0的月份数。
def Nmz(inv, p):
df = data.loc[:,inv+'1':inv+str(p)]
auto_value = np.where(df==0,1,0).sum(axis=1)
return inv+'_nmz'+str(p), auto_value
3)求最近p个月特征inv大于0的月份数是否大于等于1。
def Evr(inv, p):
df = data.loc[:,inv+'1':inv+str(p)]
Arr = np.where(df>0,1,0).sum(axis=1)
auto_value = np.where(arr,1,0)
return inv+'_evr'+str(p), auto_value
4)计算最近p个月特征inv的均值。
def Avg(inv, p):
df = data.loc[:,inv+'1':inv+str(p)]
auto_value = np.nanmean(df, axis=1)
return inv+'_avg'+str(p), auto_value
...
等等。
我们一共有35种特征聚合的方法。在书中有详细的介绍。这篇文章为了节约篇幅,具体的解释和python代码,可以参考下面这个封装好的批量调用函数 feature_generation() 。原谅我不能提供企业级的分布式脚本,不过里面的每个函数都写了备注。比心❤。
虽然花了很多功夫打磨这个函数,但您其实在实际工作中是否使用了这个函数,我认为并没那么重要。关键是要知道哪些变量衍生是有意义的。在实际业务或者比赛中,知道如何进行特征聚合。或者对手工特征工程究竟有哪些思路有一个好的认识,我觉得都是更有价值的。
下面奉上此次的多进程(可单进程)版本变量衍生函数。友情提醒,服务器核数少于35个或数据量不大不要开多进程。不然进程开销远大于变量衍生的计算过程。
import pandas as pd
import numpy as np
import multiprocessing
import warnings
warnings.filterwarnings('ignore')
pd.set_option('mode.chained_assignment', None)
# 首先执行下面的全部函数
class feature_generation(object):
def __init__(self, data, feature_list, p_list, core_num=1):
self.data = data # 包含基础变量的数据
self.feature_list = feature_list # 变量名前缀
self.p_list = p_list # 变量名前缀
self.df = pd.DataFrame([]) # 用于收集最终变量的数据框
self.func_list = ['Num', 'Nmz', 'Evr', 'Avg', 'Tot', 't2T', 'Max', 'Min', 'Msg', 'Msz',
'Cav', 'Cmn', 'Std', 'Cva', 'Cmm', 'Cnm', 'Cxm', 'Cxp', 'Ran', 'Nci', 'Ncd',
'Ncn', 'Pdn', 'Cmx', 'Cmp', 'Cnp', 'Msx', 'Trm', 'Bup', 'Mai', 'Mad',
'Rpp', 'Dpp', 'Mpp', 'Npp']
self.core_num = core_num # 35个函数对应35个核
def fit_generate(self):
"""
通过循环变量名inv和月份p,
实现全部变量的衍生
"""
for self.inv in self.feature_list:
for self.p in self.p_list:
var_df = self.generate(self.inv, self.p)
self.df = pd.concat([self.df, var_df], axis=1)
return self.df
def generate(self, inv, p):
"""
多进程,衍生变量主函数
"""
var_df = pd.DataFrame([])
pool = multiprocessing.Pool(self.core_num)
results = [pool.apply_async(self.auto_var, [func]) for func in self.func_list]
pool.close()
pool.join()
for i in range(len(results)):
try:
columns, value = results[i].get()
var_df[columns] = value
except:
continue
return var_df
# 定义批量调用双参数的函数,具体函数请往下面看。
def auto_var(self, func):
if func == 'Num':
try:
return self.Num(self.inv, self.p)
except:
print("Num PARSE ERROR", self.inv, self.p)
elif func == 'Nmz':
try:
return self.Nmz(self.inv, self.p)
except:
print("Nmz PARSE ERROR", self.inv, self.p)
elif func == 'Evr':
try:
return self.Evr(self.inv, self.p)
except:
print("Evr PARSE ERROR", self.inv, self.p)
elif func == 'Avg':
try:
return self.Avg(self.inv, self.p)
except:
print("Avg PARSE ERROR", self.inv, self.p)
elif func == 'Tot':
try:
return self.Tot(self.inv, self.p)
except:
print("Tot PARSE ERROR", self.inv, self.p)
elif func == 'Tot2T':
try:
return self.Tot2T(self.inv, self.p)
except:
print("Tot2T PARSE ERROR", self.inv, self.p)
elif func == 'Max':
try:
return self.Max(self.inv, self.p)
except:
print("Tot PARSE ERROR", self.inv, self.p)
elif func == 'Min':
try:
return self.Min(self.inv, self.p)
except:
print("Min PARSE ERROR", self.inv, self.p)
elif func == 'Msg':
try:
return self.Msg(self.inv, self.p)
except:
print("Msg PARSE ERROR", self.inv, self.p)
elif func == 'Msz':
try:
return self.Msz(self.inv, self.p)
except:
print("Msz PARSE ERROR", self.inv, self.p)
elif func == 'Cav':
try:
return self.Cav(self.inv, self.p)
except:
print("Cav PARSE ERROR", self.inv, self.p)
elif func == 'Cmn':
try:
return self.Cmn(self.inv, self.p)
except:
print("Cmn PARSE ERROR", self.inv, self.p)
elif func == 'Std':
try:
return self.Std(self.inv, self.p)
except:
print("Std PARSE ERROR", self.inv, self.p)
elif func == 'Cva':
try:
return self.Cva(self.inv, self.p)
except:
print("Cva PARSE ERROR", self.inv, self.p)
elif func == 'Cmm':
try:
return self.Cmm(self.inv, self.p)
except:
print("Cmm PARSE ERROR", self.inv, self.p)
elif func == 'Cnm':
try:
return self.Cnm(self.inv, self.p)
except:
print("Cnm PARSE ERROR", self.inv, self.p)
elif func == 'Cxm':
try:
return self.Cxm(self.inv, self.p)
except:
print("Cxm PARSE ERROR", self.inv, self.p)
elif func == 'Cxp':
try:
return self.Cxp(self.inv, self.p)
except:
print("Cxp PARSE ERROR", self.inv, self.p)
elif func == 'Ran':
try:
return self.Ran(self.inv, self.p)
except:
print("Ran PARSE ERROR", self.inv, self.p)
elif func == 'Nci':
try:
return self.Nci(self.inv, self.p)
except:
print("Nci PARSE ERROR", self.inv, self.p)
elif func == 'Pdn':
try:
return self.Pdn(self.inv, self.p)
except:
print("Pdn PARSE ERROR", self.inv, self.p)
elif func == 'Cmx':
try:
return self.Cmx(self.inv, self.p)
except:
print("Cmx PARSE ERROR", self.inv, self.p)
elif func == 'Cmp':
try:
return self.Cmp(self.inv, self.p)
except:
print("Cmp PARSE ERROR", self.inv, self.p)
elif func == 'Cnp':
try:
return self.Cnp(self.inv, self.p)
except:
print("Cnp PARSE ERROR", self.inv, self.p)
elif func == 'Msx':
try:
return self.Msx(self.inv, self.p)
except:
print("Msx PARSE ERROR", self.inv, self.p)
elif func == 'Trm':
try:
return self.Trm(self.inv, self.p)
except:
print("Trm PARSE ERROR", self.inv, self.p)
elif func == 'Bup':
try:
return self.Bup(self.inv, self.p)
except:
print("Bup PARSE ERROR", self.inv, self.p)
elif func == 'Ncd':
try:
return self.Ncd(self.inv, self.p)
except:
print("Ncd PARSE ERROR", self.inv, self.p)
elif func == 'Ncn':
try:
return self.Ncn(self.inv, self.p)
except:
print("Ncn PARSE ERROR", self.inv, self.p)
elif func == 'Mai':
try:
return self.Mai(self.inv, self.p)
except:
print("Mai PARSE ERROR", self.inv, self.p)
elif func == 'Mad':
try:
return self.Mad(self.inv, self.p)
except:
print("Mad PARSE ERROR", self.inv, self.p)
elif func == 'Rpp':
try:
return self.Rpp(self.inv, self.p)
except:
print("Rpp PARSE ERROR", self.inv, self.p)
elif func == 'Dpp':
try:
return self.Dpp(self.inv, self.p)
except:
print("Dpp PARSE ERROR", self.inv, self.p)
elif func == 'Mpp':
try:
return self.Mpp(self.inv, self.p)
except:
print("Mpp PARSE ERROR", self.inv, self.p)
elif func == 'Npp':
try:
return self.Npp(self.inv, self.p)
except:
print("Npp PARSE ERROR", self.inv, self.p)
"""
35个衍生函数,inv为变量名,p为月份(时间切片)
"""
#计算最近p个月特征inv大于0的月份数。
def Num(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = np.where(df > 0, 1, 0).sum(axis=1)
return inv + '_num' + str(p), auto_value
#计算最近p个月特征inv等于0的月份数。
def Nmz(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = np.where(df == 0, 1, 0).sum(axis=1)
return inv + '_nmz' + str(p), auto_value
#求最近p个月特征inv大于0的月份数是否大于等于1。
def Evr(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
arr = np.where(df > 0, 1, 0).sum(axis=1)
auto_value = np.where(arr, 1, 0)
return inv + '_evr' + str(p), auto_value
#计算最近p个月特征inv的均值。
def Avg(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = np.nanmean(df, axis=1)
return inv + '_avg' + str(p), auto_value
#计算最近p个月特征inv的和。
def Tot(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = np.nansum(df, axis=1)
return inv + '_tot' + str(p), auto_value
#最近(2, p+1)个月,特征inv的和。
def Tot2T(self, inv, p):
df = self.data.loc[:, inv + '2':inv + str(p + 1)].values
auto_value = df.sum(1)
return inv + '_tot2t' + str(p), auto_value
#计算最近p个月特征inv的最大值。
def Max(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = np.nanmax(df, axis=1)
return inv + '_max' + str(p), auto_value
#计算最近p个月特征inv的最小值。
def Min(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = np.nanmin(df, axis=1)
return inv + '_min' + str(p), auto_value
#计算最近p个月,最近一次特征inv大于0到现在的月份数。
def Msg(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
df_value = np.where(df > 0, 1, 0)
auto_value = []
for i in range(len(df_value)):
row_value = df_value[i, :]
if row_value.max() <= 0:
indexs = '0'
auto_value.append(indexs)
else:
indexs = 1
for j in row_value:
if j > 0:
break
indexs += 1
auto_value.append(indexs)
return inv + '_msg' + str(p), auto_value
#计算最近p个月,最近一次特征inv等于0到现在的月份数。
def Msz(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
df_value = np.where(df == 0, 1, 0)
auto_value = []
for i in range(len(df_value)):
row_value = df_value[i, :]
if row_value.max() <= 0:
indexs = '0'
auto_value.append(indexs)
else:
indexs = 1
for j in row_value:
if j > 0:
break
indexs += 1
auto_value.append(indexs)
return inv + '_msz' + str(p), auto_value
#计算当月inv/(最近p个月inv的均值)。
def Cav(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = df[inv + '1'] / (np.nanmean(df, axis=1) + 1e-10)
return inv + '_cav' + str(p), auto_value
#计算当月inv/(最近p个月inv的最小值)。
def Cmn(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = df[inv + '1'] / (np.nanmin(df, axis=1) + 1e-10)
return inv + '_cmn' + str(p), auto_value
#计算最近p个月,每两个月间inv的增长量的最大值。
def Mai(self, inv, p):
arr = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = []
for i in range(len(arr)):
df_value = arr[i, :]
value_lst = []
for k in range(len(df_value) - 1):
minus = df_value[k] - df_value[k + 1]
value_lst.append(minus)
auto_value.append(np.nanmax(value_lst))
return inv + '_mai' + str(p), auto_value
#计算最近p个月,每两个月间inv的减少量的最大值。
def Mad(self, inv, p):
arr = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = []
for i in range(len(arr)):
df_value = arr[i, :]
value_lst = []
for k in range(len(df_value) - 1):
minus = df_value[k + 1] - df_value[k]
value_lst.append(minus)
auto_value.append(np.nanmax(value_lst))
return inv + '_mad' + str(p), auto_value
#计算最近p个月特征inv的方差。
def Std(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = np.nanvar(df, axis=1)
return inv + '_std' + str(p), auto_value
#计算最近p个月特征inv的变异系数。
def Cva(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = np.nanmean(df, axis=1) / (np.nanvar(df, axis=1) + 1e-10)
return inv + '_cva' + str(p), auto_value
#计算(当月inv)-(最近p个月inv的均值)。
def Cmm(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = df[inv + '1'] - np.nanmean(df, axis=1)
return inv + '_cmm' + str(p), auto_value
#计算(当月inv)-(最近p个月inv的最小值)。
def Cnm(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = df[inv + '1'] - np.nanmin(df, axis=1)
return inv + '_cnm' + str(p), auto_value
#计算(当月inv)-(最近p个月inv的最大值)。
def Cxm(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = df[inv + '1'] - np.nanmax(df, axis=1)
return inv + '_cxm' + str(p), auto_value
#计算((当月inv)-(最近p个月inv的最大值))/(最近p个月inv的最大值)。
def Cxp(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
temp = np.nanmin(df, axis=1)
auto_value = (df[inv + '1'] - temp) / (temp + 1e-10)
return inv + '_cxp' + str(p), auto_value
#计算最近p个月inv的极差。
def Ran(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = np.nanmax(df, axis=1) - np.nanmin(df, axis=1)
return inv + '_ran' + str(p), auto_value
#计算最近p个月中,后一个月inv相比前一个月inv增长的月份数。
def Nci(self, inv, p):
arr = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = []
for i in range(len(arr)):
df_value = arr[i, :]
value_lst = []
for k in range(len(df_value) - 1):
minus = df_value[k] - df_value[k + 1]
value_lst.append(minus)
value_ng = np.where(np.array(value_lst) > 0, 1, 0).sum()
auto_value.append(np.nanmax(value_ng))
return inv + '_nci' + str(p), auto_value
#计算最近p个月中,后一个月inv相比于前一个月inv减少的月份数。
def Ncd(self, inv, p):
arr = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = []
for i in range(len(arr)):
df_value = arr[i, :]
value_lst = []
for k in range(len(df_value) - 1):
minus = df_value[k] - df_value[k + 1]
value_lst.append(minus)
value_ng = np.where(np.array(value_lst) < 0, 1, 0).sum()
auto_value.append(np.nanmax(value_ng))
return inv + '_ncd' + str(p), auto_value
#计算最近p个月中,相邻月份inv 相等的月份数。
def Ncn(self, inv, p):
arr = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = []
for i in range(len(arr)):
df_value = arr[i, :]
value_lst = []
for k in range(len(df_value) - 1):
minus = df_value[k] - df_value[k + 1]
value_lst.append(minus)
value_ng = np.where(np.array(value_lst) == 0, 1, 0).sum()
auto_value.append(np.nanmax(value_ng))
return inv + '_ncn' + str(p), auto_value
#如果最近p个月中,inv按照月份严格递增,则返回1,否则返回0。
def Bup(self, inv, p):
arr = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = []
for i in range(len(arr)):
df_value = arr[i, :]
index = 0
for k in range(len(df_value) - 1):
if df_value[k] > df_value[k + 1]:
break
index = + 1
if index == p:
value = 1
else:
value = 0
auto_value.append(value)
return inv + '_bup' + str(p), auto_value
#果最近p个月中,inv按照月份严格递减,则返回1,否则返回0。
def Pdn(self, inv, p):
arr = self.data.loc[:, inv + '1':inv + str(p)].values
auto_value = []
for i in range(len(arr)):
df_value = arr[i, :]
index = 0
for k in range(len(df_value) - 1):
if df_value[k + 1] > df_value[k]:
break
index = + 1
if index == p:
value = 1
else:
value = 0
auto_value.append(value)
return inv + '_pdn' + str(p), auto_value
#计算最近p个月inv的修剪均值。
def Trm(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = []
for i in range(len(df)):
trm_mean = list(df.loc[i, :])
trm_mean.remove(np.nanmax(trm_mean))
trm_mean.remove(np.nanmin(trm_mean))
temp = np.nanmean(trm_mean)
auto_value.append(temp)
return inv + '_trm' + str(p), auto_value
#计算当月inv/最近p个月的inv中的最大值。
def Cmx(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = (df[inv + '1'] - np.nanmax(df, axis=1)) / (np.nanmax(df, axis=1) + 1e-10)
return inv + '_cmx' + str(p), auto_value
#计算(当月inv-最近p个月的inv均值)/inv均值。
def Cmp(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = (df[inv + '1'] - np.nanmean(df, axis=1)) / (np.nanmean(df, axis=1) + 1e-10)
return inv + '_cmp' + str(p), auto_value
#计算(当月inv-最近p个月的inv最小值)/inv最小值。
def Cnp(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
auto_value = (df[inv + '1'] - np.nanmin(df, axis=1)) / (np.nanmin(df, axis=1) + 1e-10)
return inv + '_cnp' + str(p), auto_value
#计算最近p个月取最大值的月份距现在的月份数。
def Msx(self, inv, p):
df = self.data.loc[:, inv + '1':inv + str(p)]
df['_max'] = np.nanmax(df, axis=1)
for i in range(1, p + 1):
df[inv + str(i)] = list(df[inv + str(i)] == df['_max'])
del df['_max']
df_value = np.where(df == True, 1, 0)
auto_value = []
for i in range(len(df_value)):
row_value = df_value[i, :]
indexs = 1
for j in row_value:
if j == 1:
break
indexs += 1
auto_value.append(indexs)
return inv + '_msx' + str(p), auto_value
#计算 (最近p个月的均值)/(最近p~2p个月的inv均值) 。
def Rpp(self, inv, p):
df1 = self.data.loc[:, inv + '1':inv + str(p)].values
value1 = np.nanmean(df1, axis=1)
df2 = self.data.loc[:, inv + str(p):inv + str(2 * p)].values
value2 = np.nanmean(df2, axis=1)
auto_value = value1 / (value2 + 1e-10)
return inv + '_rpp' + str(p), auto_value
#计算(最近p个月的均值)-(最近p~2p个月的inv均值)。
def Dpp(self, inv, p):
df1 = self.data.loc[:, inv + '1':inv + str(p)].values
value1 = np.nanmean(df1, axis=1)
df2 = self.data.loc[:, inv + str(p):inv + str(2 * p)].values
value2 = np.nanmean(df2, axis=1)
auto_value = value1 - value2
return inv + '_dpp' + str(p), auto_value
#计算(最近p个月的inv最大值)/(最近p~2p个月的inv最大值)。
def Mpp(self, inv, p):
df1 = self.data.loc[:, inv + '1':inv + str(p)].values
value1 = np.nanmax(df1, axis=1)
df2 = self.data.loc[:, inv + str(p):inv + str(2 * p)].values
value2 = np.nanmax(df2, axis=1)
auto_value = value1 / (value2 + 1e-10)
return inv + '_mpp' + str(p), auto_value
#计算(最近p个月的inv最小值)/(最近p~2p个月的inv最小值)。
def Npp(self, inv, p):
df1 = self.data.loc[:, inv + '1':inv + str(p)].values
value1 = np.nanmin(df1, axis=1)
df2 = self.data.loc[:, inv + str(p):inv + str(2 * p)].values
value2 = np.nanmin(df2, axis=1)
auto_value = value1 / (value2 + 1e-10)
return inv + '_npp' + str(p), auto_value
需要注意,通过这种无差别聚合方法进行聚合得到的结果,通常具有较高的共线性,其所具备的信息量并无明显增加,反而会为广义线性模型带来干扰,影响模型的鲁棒性和稳定性。评分卡模型通常对于模型的稳定性要求远高于其性能。因此通常时间窗口为1年的场景下,p值会通过先验知识,人为选择3、6、12等,而不是遍历全部取值1~12。并在后续建模中,根据变量显著性、共线性等指标进行相应的特征选择。减少变量存储与数据开销。
此外,由于部分函数逻辑对p有要求(比如修剪均值需要至少p为3才能计算),所以使用了try...except结构。月份也可以换成天或者年,切片越细变量越多,但稳定性可能下降。
有的同学可能对DFS算法有所了解。并且也知道有一个开源工具叫做Featuretools,可以从理论上实现特征的无差别自动挖掘。但是在实际业务中却很少有平台真的去使用它。其原因有二:一是生产效率问题,且特征有大量信息杂糅,对变量存储和模型部署都是一种负担;二是究竟从哪些角度做特征聚合,还是由人来决定的,缺少经验指导仍然不能找到正确的挖掘方向。 而上述内容的意义,是直接给出那些经过时间沉淀后被证实好用的衍生逻辑。并且通过多进程的逻辑精准快速的完成该过程。并且同时让读者触摸人工可解释特征工程的内核。
另外提供一种便于实际落地的方案。在hive中进行特征开发,只构造基础表。可以在每次离线建模过程中衍生特征,同时根据相关性和目标相关性,在衍生过程中筛选特征,最终入模特征通过python脚本自动生成其变量生成的hql脚本。直接部署上线。从而绕过hive中撰写UDF衍生变量后存储空间过大的问题。这在合理组织表结构后是完全可以实现的。
三、特征组合
特征组合(Feature combination),又叫特征交叉(Feature crossing),指通过不同特征之间基于常识、经验、数据挖掘技术进行分段组合实现特征构造,产生包含更多信息的新特征。如将{工作日,休息日},{上午,下午}两组特征维度进行组合,可以得到四个特征维度,其交叉逻辑如表所示。
除此之外,可以通过决策树模型,基于特定指标,贪心地搜索最优的特征组合形式。本节以CART回归树为例,使用一个书中的外卖平台骑手贷的例子进行演示。数据字典如图所示。
import pandas as pd
import numpy as np
import os
os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
data = pd.read_excel('./data/_data_for_tree.xlsx')
x = data.drop('bad_ind',axis=1).copy()
y = data.bad_ind.copy()
from sklearn import tree
Dtree = tree.DecisionTreeRegressor(max_depth=2, min_samples_leaf=500,
min_samples_split=5000)
dtree = dtree.fit(x,y)
import pydotplus
from IPython.display import Image
from sklearn.externals.six import StringIO
with open("dt.dot", "w") as f:
tree.export_graphviz(dtree, out_file=f)
dot_data = StringIO()
tree.export_graphviz(dtree, out_file=dot_data,
feature_names=x.columns,
class_names=['bad_ind'],
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())
运行结果如下所示。
CART回归树的节点预测属性value表示当前子群中目标变量的均值。而当前标签为0和1的时候,目标变量的均值等价于标签为1的样本占当前子群样本的比例。
按照决策树结果,对本例子进行新特征构造。
x['n1'] = x.apply(lambda x:1 if x.amount_tot>9614.5 and coupon_amount_cnt<=6.0 else 0)
x['n2'] = x.apply(lambda x:1 if x.amount_tot>9614.5 and coupon_amount_cnt>6.0 else 0)
利用决策树实现特征的自动组合,可以有效减少建模人员的工作难度。由于LR模型缺乏非线性学习能力,因此常需要和决策树模型结合,人工构造相应特征。这个过程可以更好的利用变量的局部性质,而不是在lr中那种只能利用变量的全局性质。这也是为什么XGBoost&LightGBM&CatBoost等树模型经常有远超线性模型表现的原因之一。另一部分原因主要是来自于集成模型的偏差优化。但是经过试验可以发现,使用lr作为元模型做集成,很多时候效果也是不如决策树做元模型的。
然而特征之间的组合并非任何时候都会取得好的结果。通常在建立线性评分卡模型时,建模人员会同时使用树模型进行训练并对比评分卡与树模型的结果。若两者结果相近,通常代表特征之间的组合对模型的提升较为有限。
四、总结
本文为读者介绍了2类特征挖掘方法。其中包括35种特征聚合的方案,以及如何通过树模型提供特征交叉的指导方向。其实细心的读者可能还会在其中发现许多小的知识点。依旧是那句话,也许不对,也许没用。不过还是希望读完这篇文章对您有所帮助。感谢阅读。
- 完 -