前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >融云技术分享:基于WebRTC的实时音视频首帧显示时间优化实践

融云技术分享:基于WebRTC的实时音视频首帧显示时间优化实践

原创
作者头像
JackJiang
修改2020-09-29 11:06:01
1.2K0
修改2020-09-29 11:06:01
举报
文章被收录于专栏:即时通讯技术

本文由融云技术团队原创投稿,作者是融云WebRTC高级工程师苏道,转载请注明出处。

1、引言

在一个典型的IM应用里,使用实时音视频聊天功能时,视频首帧的显示,是一项很重要的用户体验指标。

本文主要通过对WebRTC接收端的音视频处理过程分析,来了解和优化视频首帧的显示时间,并进行了总结和分享。

2、什么是WebRTC?

对于没接触过实时音视频技术的人来说,总是看到别人在提WebRTC,那WebRTC是什么?我们有必要简单介绍一下。

说到 WebRTC,我们不得不提到 Gobal IP Solutions,简称 GIPS。这是一家 1990 年成立于瑞典斯德哥尔摩的 VoIP 软件开发商,提供了可以说是世界上最好的语音引擎。相关介绍详见《访谈WebRTC标准之父:WebRTC的过去、现在和未来》。

Skype、腾讯 QQ、WebEx、Vidyo 等都使用了它的音频处理引擎,包含了受专利保护的回声消除算法,适应网络抖动和丢包的低延迟算法,以及先进的音频编解码器。

Google 在 Gtalk 中也使用了 GIPS 的授权。Google 在 2011 年以6820万美元收购了 GIPS,并将其源代码开源,加上在 2010 年收购的 On2 获取到的 VPx 系列视频编解码器(详见《即时通讯音视频开发(十七):视频编码H.264、VP8的前世今生》),WebRTC 开源项目应运而生,即 GIPS 音视频引擎 + 替换掉 H.264 的 VPx 视频编解码器。

在此之后,Google 又将在 Gtalk 中用于 P2P 打洞的开源项目 libjingle 融合进了 WebRTC。目前 WebRTC 提供了包括 Web、iOS、Android、Mac、Windows、Linux 在内的所有平台支持。

(以上介绍,引用自《了不起的WebRTC:生态日趋完善,或将实时音视频技术白菜化》)

虽然WebRTC的目标是实现跨平台的Web端实时音视频通讯,但因为核心层代码的Native、高品质和内聚性,开发者很容易进行除Web平台外的移殖和应用。目前为止,WebRTC几乎是是业界能免费得到的唯一高品质实时音视频通讯技术。

3、流程介绍

一个典型的实时音视频处理流程大概是这样:

  • 1)发送端采集音视频数据,通过编码器生成帧数据;
  • 2)这数据被打包成 RTP 包,通过 ICE 通道发送到接收端;
  • 3)接收端接收 RTP 包,取出 RTP payload,完成组帧的操作;
  • 4)之后音视频解码器解码帧数据,生成视频图像或音频 PCM 数据。

如下图所示:

本文所涉及的参数调整,谈论的部分位于上图中的第 4 步。

因为是接收端,所以会收到对方的 Offer 请求。先设置 SetRemoteDescription 再 SetLocalDescription。

如下图蓝色部分: 

4、参数调整

4.1 视频参数调整

当收到 Signal 线程 SetRemoteDescription 后,会在 Worker 线程中创建 VideoReceiveStream 对象。具体流程为 SetRemoteDescription -> VideoChannel::SetRemoteContent_w 创建 WebRtcVideoReceiveStream。

WebRtcVideoReceiveStream 包含了一个 VideoReceiveStream 类型 stream_ 对象, 通过 webrtc::VideoReceiveStream* Call::CreateVideoReceiveStream 创建。

创建后立即启动 VideoReceiveStream 工作,即调用 Start() 方法。

此时 VideoReceiveStream 包含一个 RtpVideoStreamReceiver 对象准备开始处理 video RTP 包。

接收方创建 createAnswer 后通过 setLocalDescription 设置 local descritpion。 

对应会在 Worker 线程中 setLocalContent_w 方法中根据 SDP 设置 channel 的接收参数,最终会调用到 WebRtcVideoReceiveStream::SetRecvParameters。

WebRtcVideoReceiveStream::SetRecvParameters 实现如下:

void WebRtcVideoChannel::WebRtcVideoReceiveStream::SetRecvParameters(     const ChangedRecvParameters& params) {   bool video_needs_recreation = false;   bool flexfec_needs_recreation = false;   if(params.codec_settings) {     ConfigureCodecs(*params.codec_settings);     video_needs_recreation = true;   }   if(params.rtp_header_extensions) {     config_.rtp.extensions = *params.rtp_header_extensions;     flexfec_config_.rtp_header_extensions = *params.rtp_header_extensions;     video_needs_recreation = true;     flexfec_needs_recreation = true;   }   if(params.flexfec_payload_type) {     ConfigureFlexfecCodec(*params.flexfec_payload_type);     flexfec_needs_recreation = true;   }   if(flexfec_needs_recreation) {     RTC_LOG(LS_INFO) << "MaybeRecreateWebRtcFlexfecStream (recv) because of "                         "SetRecvParameters";     MaybeRecreateWebRtcFlexfecStream();   }   if(video_needs_recreation) {     RTC_LOG(LS_INFO)         << "RecreateWebRtcVideoStream (recv) because of SetRecvParameters";     RecreateWebRtcVideoStream();   } }

根据上面 SetRecvParameters 代码,如果 codec_settings 不为空、rtp_header_extensions 不为空、flexfec_payload_type 不为空都会重启 VideoReceiveStream。

video_needs_recreation 表示是否要重启 VideoReceiveStream。

重启过程为:把先前创建的释放掉,然后重建新的 VideoReceiveStream。

以 codec_settings 为例:初始 video codec 支持 H264 和 VP8。若对端只支持 H264,协商后的 codec 仅支持 H264。SetRecvParameters 中的 codec_settings 为 H264 不空。其实前后 VideoReceiveStream 的都有 H264 codec,没有必要重建 VideoReceiveStream。可以通过配置本地支持的 video codec 初始列表和 rtp extensions,从而生成的 local SDP 和 remote SDP 中影响接收参数部分调整一致,并且判断 codec_settings 是否相等。 如果不相等再 video_needs_recreation 为 true。

这样设置就会使 SetRecvParameters 避免触发重启 VideoReceiveStream 逻辑。 

在 debug 模式下,修改后,验证没有 “RecreateWebRtcVideoStream (recv) because of SetRecvParameters” 的打印, 即可证明没有 VideoReceiveStream 重启。

4.2 音频参数调整

和上面的视频调整类似,音频也会有因为 rtp extensions 不一致导致重新创建 AudioReceiveStream,也是释放先前的 AudioReceiveStream,再重新创建 AudioReceiveStream。

参考代码:

bool WebRtcVoiceMediaChannel::SetRecvParameters(     const AudioRecvParameters& params) {   TRACE_EVENT0("webrtc", "WebRtcVoiceMediaChannel::SetRecvParameters");   RTC_DCHECK(worker_thread_checker_.CalledOnValidThread());   RTC_LOG(LS_INFO) << "WebRtcVoiceMediaChannel::SetRecvParameters: "                    << params.ToString();   // TODO(pthatcher): Refactor this to be more clean now that we have   // all the information at once.   if(!SetRecvCodecs(params.codecs)) {     return false;   }   if(!ValidateRtpExtensions(params.extensions)) {     return false;   }   std::vector<webrtc::RtpExtension> filtered_extensions = FilterRtpExtensions(       params.extensions, webrtc::RtpExtension::IsSupportedForAudio, false);   if(recv_rtp_extensions_ != filtered_extensions) {     recv_rtp_extensions_.swap(filtered_extensions);     for(auto& it : recv_streams_) {       it.second->SetRtpExtensionsAndRecreateStream(recv_rtp_extensions_);     }   }   return true; }

AudioReceiveStream 的构造方法会启动音频设备,即调用 AudioDeviceModule 的 StartPlayout。

AudioReceiveStream 的析构方法会停止音频设备,即调用 AudioDeviceModule 的 StopPlayout。

因此重启 AudioReceiveStream 会触发多次 StartPlayout/StopPlayout。

经测试,这些不必要的操作会导致进入视频会议的房间时,播放的音频有一小段间断的情况。

解决方法:同样是通过配置本地支持的 audio codec 初始列表和 rtp extensions,从而生成的 local SDP 和 remote SDP 中影响接收参数部分调整一致,避免 AudioReceiveStream 重启逻辑。

另外 audio codec 多为 WebRTC 内部实现,去掉一些不用的 Audio Codec,可以减小 WebRTC 对应的库文件。

4.3 音视频相互影响

WebRTC 内部有三个非常重要的线程:

  • 1)woker 线程;
  • 2)signal 线程;
  • 3)network 线程。

调用 PeerConnection 的 API 的调用会由 signal 线程进入到 worker 线程。

worker 线程内完成媒体数据的处理,network 线程处理网络相关的事务,channel.h 文件中有说明,以 _w 结尾的方法为 worker 线程的方法,signal 线程的到 worker 线程的调用是同步操作。

如下面代码中的 InvokerOnWorker 是同步操作,setLocalContent_w 和 setRemoteContent_w 是 worker 线程中的方法。

bool BaseChannel::SetLocalContent(const MediaContentDescription* content,                                   SdpType type,                                   std::string* error_desc) {   TRACE_EVENT0("webrtc", "BaseChannel::SetLocalContent");   returnI nvokeOnWorker<bool>(       RTC_FROM_HERE,       Bind(&BaseChannel::SetLocalContent_w, this, content, type, error_desc)); } bool BaseChannel::SetRemoteContent(const MediaContentDescription* content,                                    SdpType type,                                    std::string* error_desc) {   TRACE_EVENT0("webrtc", "BaseChannel::SetRemoteContent");   return InvokeOnWorker<bool>(       RTC_FROM_HERE,       Bind(&BaseChannel::SetRemoteContent_w, this, content, type, error_desc)); }

setLocalDescription 和 setRemoteDescription 中的 SDP 信息都会通过 PeerConnection 的 PushdownMediaDescription 方法依次下发给 audio/video RtpTransceiver 设置 SDP 信息。

举例:执行 audio 的 SetRemoteContent_w 执行很长(比如音频 AudioDeviceModule 的 InitPlayout 执行耗时), 会影响后面的 video SetRemoteContent_w 的设置时间。

PushdownMediaDescription 代码:

RTCError PeerConnection::PushdownMediaDescription(     SdpType type,     cricket::ContentSource source) {   const SessionDescriptionInterface* sdesc =       (source == cricket::CS_LOCAL ? local_description()                                    : remote_description());   RTC_DCHECK(sdesc);   // Push down the new SDP media section for each audio/video transceiver.   for(const auto& transceiver : transceivers_) {     const ContentInfo* content_info =         FindMediaSectionForTransceiver(transceiver, sdesc);     cricket::ChannelInterface* channel = transceiver->internal()->channel();     if(!channel || !content_info || content_info->rejected) {       continue;     }     const MediaContentDescription* content_desc =         content_info->media_description();     if(!content_desc) {       continue;     }     std::string error;     bool success = (source == cricket::CS_LOCAL)                        ? channel->SetLocalContent(content_desc, type, &error)                        : channel->SetRemoteContent(content_desc, type, &error);     if(!success) {       LOG_AND_RETURN_ERROR(RTCErrorType::INVALID_PARAMETER, error);     }   }   ... }

5、其他影响首帧显示的问题

5.1 Android图像宽高16字节对齐

AndroidVideoDecoder 是 WebRTC Android 平台上的视频硬解类。AndroidVideoDecoder 利用 MediaCodec API 完成对硬件解码器的调用。

MediaCodec 有已下解码相关的 API:

  • 1)dequeueInputBuffer:若大于 0,则是返回填充编码数据的缓冲区的索引,该操作为同步操作;
  • 2)getInputBuffer:填充编码数据的 ByteBuffer 数组,结合 dequeueInputBuffer 返回值,可获取一个可填充编码数据的 ByteBuffer;
  • 3)queueInputBuffer:应用将编码数据拷贝到 ByteBuffer 后,通过该方法告知 MediaCodec 已经填写的编码数据的缓冲区索引;
  • 4)dequeueOutputBuffer:若大于 0,则是返回填充解码数据的缓冲区的索引,该操作为同步操作;
  • 5)getOutputBuffer:填充解码数据的 ByteBuffer 数组,结合 dequeueOutputBuffer 返回值,可获取一个可填充解码数据的 ByteBuffer;
  • 6)releaseOutputBuffer:告诉编码器数据处理完成,释放 ByteBuffer 数据。

在实践当中发现,发送端发送的视频宽高需要 16 字节对齐,因为在某些 Android 手机上解码器需要 16 字节对齐。

大致的原理就是:Android 上视频解码先是把待解码的数据通过 queueInputBuffer 给到 MediaCodec。然后通过 dequeueOutputBuffer 反复查看是否有解完的视频帧。若非 16 字节对齐,dequeueOutputBuffer 会有一次MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED。而不是一上来就能成功解码一帧。

经测试发现:帧宽高非 16 字节对齐会比 16 字节对齐的慢 100 ms 左右。

5.2 服务器需转发关键帧请求

iOS 移动设备上,WebRTC App应用进入后台后,视频解码由 VTDecompressionSessionDecodeFrame 返回 kVTInvalidSessionErr,表示解码session 无效。从而会触发观看端的关键帧请求给服务器。

这里要求服务器必须转发接收端发来的关键帧请求给发送端。若服务器没有转发关键帧给发送端,接收端就会长时间没有可以渲染的图像,从而出现黑屏问题。

这种情况下只能等待发送端自己生成关键帧,发送个接收端,从而使黑屏的接收端恢复正常。

5.3 WebRTC内部的一些丢弃数据逻辑举例

Webrtc从接受报数据到、给到解码器之间的过程中也会有很多验证数据的正确性。

举例1:

PacketBuffer 中记录着当前缓存的最小的序号 first_seq_num_(这个值也是会被更新的)。 当 PacketBuffer 中 InsertPacket 时候,如果即将要插入的 packet 的序号 seq_num 小于 first_seq_num,这个 packet 会被丢弃掉。如果因此持续丢弃 packet,就会有视频不显示或卡顿的情况。

举例2:

正常情况下 FrameBuffer 中帧的 picture id,时间戳都是一直正增长的。

如果 FrameBuffer 收到 picture_id 比最后解码帧的 picture id 小时,分两种情况:

  • 1)时间戳比最后解码帧的时间戳大,且是关键帧,就会保存下来。
  • 2)除情况 1 之外的帧都会丢弃掉。

代码如下: 

auto last_decoded_frame = decoded_frames_history_.GetLastDecodedFrameId();  auto last_decoded_frame_timestamp =      decoded_frames_history_.GetLastDecodedFrameTimestamp();  if(last_decoded_frame && id <= *last_decoded_frame) {    if(AheadOf(frame->Timestamp(), *last_decoded_frame_timestamp) &&        frame->is_keyframe()) {      // If this frame has a newer timestamp but an earlier picture id then we      // assume there has been a jump in the picture id due to some encoder      // reconfiguration or some other reason. Even though this is not according      // to spec we can still continue to decode from this frame if it is a      // keyframe.      RTC_LOG(LS_WARNING)          << "A jump in picture id was detected, clearing buffer.";      ClearFramesAndHistory();      last_continuous_picture_id = -1;    } else{      RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("                          << id.picture_id << ":"                          << static_cast<int>(id.spatial_layer)                          << ") inserted after frame ("                          << last_decoded_frame->picture_id << ":"                          << static_cast<int>(last_decoded_frame->spatial_layer)                          << ") was handed off for decoding, dropping frame.";      return last_continuous_picture_id;    }  }

因此为了能让收到了流顺利播放,发送端和中转的服务端需要确保视频帧的 picture_id, 时间戳正确性。

WebRTC 还有其他很多丢帧逻辑,若网络正常且有持续有接收数据,但是视频卡顿或黑屏无显示,多为流本身的问题。

6、本文小结

本文通过分析 WebRTC 音视频接收端的处理逻辑,列举了一些可以优化首帧显示的点,比如通过调整 local SDP 和 remote SDP 中与影响接收端处理的相关部分,从而避免 Audio/Video ReceiveStream 的重启。

另外列举了 Android 解码器对视频宽高的要求、服务端对关键帧请求处理、以及 WebRTC 代码内部的一些丢帧逻辑等多个方面对视频显示的影响。 这些点都提高了融云 SDK 视频首帧的显示时间,改善了用户体验。

因个人水平有限,文章内容或许存在一定的局限性,欢迎回复进行讨论。

本文已同步发布于“即时通讯技术圈”公众号。同步发布链接是:http://www.52im.net/thread-3169-1-1.html

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、引言
  • 2、什么是WebRTC?
  • 3、流程介绍
  • 4、参数调整
    • 4.1 视频参数调整
      • 4.2 音频参数调整
        • 4.3 音视频相互影响
        • 5、其他影响首帧显示的问题
          • 5.1 Android图像宽高16字节对齐
            • 5.2 服务器需转发关键帧请求
              • 5.3 WebRTC内部的一些丢弃数据逻辑举例
              • 6、本文小结
              相关产品与服务
              实时音视频
              实时音视频(Tencent RTC)基于腾讯21年来在网络与音视频技术上的深度积累,以多人音视频通话和低延时互动直播两大场景化方案,通过腾讯云服务向开发者开放,致力于帮助开发者快速搭建低成本、低延时、高品质的音视频互动解决方案。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档