Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >OpenCV:边缘检测。

OpenCV:边缘检测。

作者头像
小F
发布于 2020-10-09 07:37:47
发布于 2020-10-09 07:37:47
1.7K00
代码可运行
举报
运行总次数:0
代码可运行

边缘在人类视觉和计算机视觉中均起着重要的作用。

人类能够仅凭一张背景剪影或一个草图就识别出物体类型和姿态。

其中OpenCV提供了许多边缘检测滤波函数,这些滤波函数都会将非边缘区域转为黑色,将边缘区域转为白色或其他饱和的颜色。

不过这些滤波函数都很容易将噪声错误地识别为边缘,所以需要进行模糊处理。

本次的模糊操作使用高斯模糊(低通滤波器),最常用的模糊滤波器(平滑滤波器)之一,是一个削弱高频信号强度的低通滤波器。

低通滤波器,在像素与周围像素的亮度差值小于一个特定值时,平滑该像素的亮度,主要用于去噪和模糊化。

边缘检测则是使用OpenCV的Canny函数实现,算法虽然很复杂,但是代码却很简单。

5个步骤,使用高斯滤波器对图像去噪、计算梯度、在边缘上使用非最大抑制(NMS)、在检测到的边缘上使用双(double)阈值去除阳性(false positive)、分析所有的边缘及其连接,保留真正的边缘并消除不明显的边缘。

下面就来实现一下「跳一跳」的边缘检测,得以获取方块的中心位置。

/ 01 / 边缘检测

Canny边缘检测代码如下。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import cv2
import numpy as np

# 读取原图像
img = cv2.imread('game.png', 0)

# 显示原图像
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 400, 600)
cv2.imshow('img', img)

# 高斯模糊
img_rgb = cv2.GaussianBlur(img, (5, 5), 0)
canny_img = cv2.Canny(img_rgb, 1, 10)

# 显示边缘检测图像
cv2.namedWindow('canny', 0)
cv2.resizeWindow('canny', 400, 600)
cv2.imshow('canny', canny_img)

# 输出边缘检测图像的高和宽
H, W = canny_img.shape
print(H, W)

输出的图像高宽分别为1920和1080。

下面是原图像灰度图和边缘检测图像。

接下来,通过边缘检测图像找到方块的第一个顶点(上顶点)。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 第一个顶点的高度,row为列表(代表每一行的像素值),max(row)获取列表中最大的像素值
y_top = np.nonzero([max(row) for row in canny_img[400:]])[0][0] + 400

对图像高度大于400的行进行遍历(这样可以去除上方数字270以及小程序块的影响)。

np.nonzero()表示获取列表元素数值不为0的位置,第一个即为上顶点的高度值。

接下来获取上顶点的宽度值。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 第一个顶点的宽度
x_top = int(np.mean(np.nonzero(canny_img[y_top])))

这里发现有好几个水平点,所以最后取平均值。

接下来对方块下顶点的位置进行确定。

为了跳过小白圈的影响,在上顶点高度的基础上加上80个像素大小。

然后往下方遍历,宽度值保持不变,直至找到像素值不为0的点。

便得到了方块的下顶点坐标。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 跳过小白圈,然后遍历
y_bottom = y_top + 80
for row in range(y_bottom, H):
    if canny_img[row, x_top] != 0:
        y_bottom = row
        break

# 得到方块的中心点
x_center, y_center = x_top, (y_top + y_bottom) // 2

# 绘制以方块中心点为圆心的圆
cv2.circle(canny_img, (x_center, y_center), 33, (255, 0, 255), 2)

# 显示得到的图像
cv2.namedWindow('result', 0)
cv2.resizeWindow('result', 400, 600)
cv2.imshow('result', canny_img)

# 结束
cv2.waitKey(0)
cv2.destroyAllWindows()

最后通过上下顶点的坐标,得到方块的中心点。

左图为边缘检测原图,右图为找到方块中心点并以中心点为圆心绘制圆形的图像。

/ 02 / 跳动实现

现在结合之前模板匹配获得到的小跳棋位置,计算两中心的距离。

勾三股四弦五,便能得到两个中心的距离了。

看下图,一目了然。

玩过跳一跳的应该都知道,对于不同的距离,我们需要按压的时间是不同的。

所以可以给距离和按压时间设置一个相关参数,此处设置为1.35。

对于我的手机简直完美匹配(与屏幕大小有关)。

最后通过adb命令完成一定的按压时间,完成「跳一跳」自动化。

/ 03 / 总结

「跳一跳」自动化马上就要实现,全部源码下期见。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 法纳斯特 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
用Python实现跳一跳自动跳跃。
经由前两期的介绍,对于「跳一跳」自动化的实现,基本差不多了。 本期就来完整的跑一遍,快乐学习。 1. OpenCV:模板匹配。 获得小跳棋中心位置 2. OpenCV:边缘检测。 获得下
数据森麟
2019/09/27
1.3K0
用Python实现跳一跳自动跳跃。
OpenCV:模板匹配。
主要涉及到了OpenCV的模板匹配和边缘检测技术,以及Android开发调试工具ADB。
小F
2020/10/09
8490
OpenCV:模板匹配。
OpenCV 入门之图像模糊与边缘检测
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。官方下载链接如下:https://opencv.org/releases/
用户6021899
2019/08/21
2.2K0
OpenCV 入门之图像模糊与边缘检测
Task06 边缘检测
如上图所示,上图的第一幅图表示一张数字图片,我们对水平红线处进行求导,便可得到上图二中的关系,可以看到在边缘处有着较大的跳变。但是,导数也会受到噪声的影响,因此建议在求导数之前先对图像进行平滑处理(上图三)。
致Great
2020/05/08
5130
OpenCV:目标跟踪。
下面就通过计算视频帧之间的差异(即考虑背景帧和其他帧之间的差异),进而实现目标跟踪。
AiTechYun
2019/07/17
1.9K0
OpenCV:目标跟踪。
基于OpenCV的图像梯度与边缘检测!
严格的说,梯度计算需要求导数。但是图像梯度的计算,是通过计算像素值的差得到梯度的近似值。图像梯度表示的是图像变化的速度,反映了图像的边缘信息。
Datawhale
2020/07/09
4.6K0
基于OpenCV的图像梯度与边缘检测!
基于OpenCV的跳一跳外挂实现原理
最近,微信跳一跳小游戏迅速走红并且在朋友圈刷屏,游戏的规则很简单,就是控制一个小矮子再各个墩子上跳来跳去。由于游戏比较简单,一时间大家都玩起来了,这也带动了一些作弊的产生。Android和iOS的小程
xiangzhihong
2018/02/06
2.3K0
基于OpenCV的跳一跳外挂实现原理
OpenCV 边缘检测
Canny 边缘检测算子,其算法步骤大体如下: 1) 用高斯滤波器对输入图像做平滑处理 (大小为 5x5 的高斯核)
AI异构
2020/07/29
9730
OpenCV 边缘检测
使用OpenCV+Python进行Canny边缘检测
如果我们环顾房间,我们会看到大量的物体,每一个都很容易区分,并有自己独特的边缘。我们区分物体的先天能力部分来自于我们的视觉系统检测边缘的能力。检测边缘是视觉的一项基本任务,尽管没有它我们不会完全失明,但以前区分物体的简单任务将变得非常具有挑战性。电脑也是类似的,计算机要检测物体,首先需要识别边缘。
小白学视觉
2022/02/11
3K0
使用OpenCV+Python进行Canny边缘检测
【OpenCV】Chapter9.边缘检测与图像分割
边缘检测的原理和matlab实现在我之前这两篇博文中提到过,这里不再赘述。 【计算机视觉】基础图像知识点整理【计算机视觉】数字图像处理基础知识题 此次来看OpenCV的实现方式。
zstar
2022/09/28
1.5K0
【OpenCV】Chapter9.边缘检测与图像分割
OpenCV边缘检测与视频读写
边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。边缘的表现形式:
@小森
2024/03/15
1050
OpenCV边缘检测与视频读写
OpenCV Python 系列教程 4 - OpenCV 图像处理(上)
HSV 的色相范围为 [0,179],饱和度范围为 [0,255],值范围为 [0,255]。不同的软件使用不同的规模。
机器视觉CV
2019/07/15
3K0
OpenCV Python 系列教程 4 - OpenCV 图像处理(上)
CV学习笔记(十四):边缘检测
在这一篇文章里我们将去学习在计算机视觉中边缘检测的知识,并且去使用OpenCV来实现Canny边缘检测算法。
云时之间
2020/03/27
2.2K0
卷积滤波器与边缘检测
高低频率 高频图像是强度变化很大的图像。并且亮度级别从一个像素到下一个像素快速变化。低频图像可以是亮度相对均匀或变化非常慢的图像。这是一个例子中最容易看到的。
小飞侠xp
2018/08/29
1.9K0
Python 图像边缘检测 | 利用 opencv 和 skimage 的 Canny 算法
CSDN 叶庭云:https://yetingyun.blog.csdn.net/
叶庭云
2022/12/28
2.4K0
Python 图像边缘检测 | 利用 opencv 和 skimage 的 Canny 算法
Canny边缘检测算法(基于OpenCV的Java实现)
Canny边缘检测于1986年由JOHN CANNY首次在论文《A Computational Approach to Edge Detection》中提出,就此拉开了Canny边缘检测算法的序幕。
gyro永不抽风
2021/05/21
1.4K0
OpenCV计算机视觉整理图像、视频加载与显示OpenCV的色彩空间OpenCV图形绘制
每一个像素有三种颜色——红色、绿色和蓝色。通过不同光源的组合,形成真彩色,有暗的,有明亮的。
算法之名
2021/11/15
9260
OpenCV计算机视觉整理图像、视频加载与显示OpenCV的色彩空间OpenCV图形绘制
[Python图像处理] 十八.图像锐化与边缘检测之Scharr算子、Canny算子和LOG算子
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
Eastmount
2023/09/01
7590
[Python图像处理] 十八.图像锐化与边缘检测之Scharr算子、Canny算子和LOG算子
OpenCV——Canny边缘检测(cv2.Canny())
Canny 边缘检测是一种使用多级边缘检测算法检测边缘的方法。1986 年,John F. Canny 发 表了著名的论文 A Computational Approach to Edge Detection,在该论文中详述了如何进行边缘 检测。
全栈程序员站长
2022/09/01
4.3K0
OpenCV——Canny边缘检测(cv2.Canny())
Canny算子–边缘检测[通俗易懂]
Canny边缘检测于1986年由JOHN CANNY首次在论文《A Computational Approach to Edge Detection》中提出,就此拉开了Canny边缘检测算法的序幕。
全栈程序员站长
2022/08/31
4.1K0
相关推荐
用Python实现跳一跳自动跳跃。
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验