前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >keras处理欠拟合和过拟合的实例讲解

keras处理欠拟合和过拟合的实例讲解

作者头像
砸漏
发布2020-11-02 11:55:07
5150
发布2020-11-02 11:55:07
举报
文章被收录于专栏:恩蓝脚本

baseline

代码语言:javascript
复制
import tensorflow.keras.layers as layers
baseline_model = keras.Sequential(
[
 layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)),
 layers.Dense(16, activation='relu'),
 layers.Dense(1, activation='sigmoid')
]
)
baseline_model.compile(optimizer='adam',
      loss='binary_crossentropy',
      metrics=['accuracy', 'binary_crossentropy'])
baseline_model.summary()

baseline_history = baseline_model.fit(train_data, train_labels,
          epochs=20, batch_size=512,
          validation_data=(test_data, test_labels),
          verbose=2)

小模型

代码语言:javascript
复制
small_model = keras.Sequential(
[
 layers.Dense(4, activation='relu', input_shape=(NUM_WORDS,)),
 layers.Dense(4, activation='relu'),
 layers.Dense(1, activation='sigmoid')
]
)
small_model.compile(optimizer='adam',
      loss='binary_crossentropy',
      metrics=['accuracy', 'binary_crossentropy'])
small_model.summary()
small_history = small_model.fit(train_data, train_labels,
          epochs=20, batch_size=512,
          validation_data=(test_data, test_labels),
          verbose=2)

大模型

代码语言:javascript
复制
big_model = keras.Sequential(
[
 layers.Dense(512, activation='relu', input_shape=(NUM_WORDS,)),
 layers.Dense(512, activation='relu'),
 layers.Dense(1, activation='sigmoid')
]
)
big_model.compile(optimizer='adam',
      loss='binary_crossentropy',
      metrics=['accuracy', 'binary_crossentropy'])
big_model.summary()
big_history = big_model.fit(train_data, train_labels,
          epochs=20, batch_size=512,
          validation_data=(test_data, test_labels),
          verbose=2)

绘图比较上述三个模型

代码语言:javascript
复制
def plot_history(histories, key='binary_crossentropy'):
 plt.figure(figsize=(16,10))
 
 for name, history in histories:
 val = plt.plot(history.epoch, history.history['val_'+key],
     '--', label=name.title()+' Val')
 plt.plot(history.epoch, history.history[key], color=val[0].get_color(),
    label=name.title()+' Train')

 plt.xlabel('Epochs')
 plt.ylabel(key.replace('_',' ').title())
 plt.legend()

 plt.xlim([0,max(history.epoch)])


plot_history([('baseline', baseline_history),
    ('small', small_history),
    ('big', big_history)])

三个模型在迭代过程中在训练集的表现都会越来越好,并且都会出现过拟合的现象

大模型在训练集上表现更好,过拟合的速度更快

l2正则减少过拟合

代码语言:javascript
复制
l2_model = keras.Sequential(
[
 layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001), 
     activation='relu', input_shape=(NUM_WORDS,)),
 layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001), 
     activation='relu'),
 layers.Dense(1, activation='sigmoid')
]
)
l2_model.compile(optimizer='adam',
      loss='binary_crossentropy',
      metrics=['accuracy', 'binary_crossentropy'])
l2_model.summary()
l2_history = l2_model.fit(train_data, train_labels,
          epochs=20, batch_size=512,
          validation_data=(test_data, test_labels),
          verbose=2)
plot_history([('baseline', baseline_history),
    ('l2', l2_history)])

可以发现正则化之后的模型在验证集上的过拟合程度减少

添加dropout减少过拟合

代码语言:javascript
复制
dpt_model = keras.Sequential(
[
 layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)),
 layers.Dropout(0.5),
 layers.Dense(16, activation='relu'),
 layers.Dropout(0.5),
 layers.Dense(1, activation='sigmoid')
]
)
dpt_model.compile(optimizer='adam',
      loss='binary_crossentropy',
      metrics=['accuracy', 'binary_crossentropy'])
dpt_model.summary()
dpt_history = dpt_model.fit(train_data, train_labels,
          epochs=20, batch_size=512,
          validation_data=(test_data, test_labels),
          verbose=2)
plot_history([('baseline', baseline_history),
    ('dropout', dpt_history)])

批正则化

代码语言:javascript
复制
model = keras.Sequential([
 layers.Dense(64, activation='relu', input_shape=(784,)),
 layers.BatchNormalization(),
 layers.Dense(64, activation='relu'),
 layers.BatchNormalization(),
 layers.Dense(64, activation='relu'),
 layers.BatchNormalization(),
 layers.Dense(10, activation='softmax')
])
model.compile(optimizer=keras.optimizers.SGD(),
    loss=keras.losses.SparseCategoricalCrossentropy(),
    metrics=['accuracy'])
model.summary()
history = model.fit(x_train, y_train, batch_size=256, epochs=100, validation_split=0.3, verbose=0)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training', 'validation'], loc='upper left')
plt.show()

总结

防止神经网络中过度拟合的最常用方法:

获取更多训练数据。

减少网络容量。

添加权重正规化。

添加dropout。

以上这篇keras处理欠拟合和过拟合的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-09-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档