前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CentripetalNet:更合理的角点匹配,多方面改进CornerNet | CVPR 2020

CentripetalNet:更合理的角点匹配,多方面改进CornerNet | CVPR 2020

作者头像
AIWalker
发布2020-11-23 11:07:30
8880
发布2020-11-23 11:07:30
举报
文章被收录于专栏:AIWalker

CentripetalNet的核心在于新的角点匹配方式,额外学习一个向心偏移值,偏移值足够小的角点即为匹配,相对于embedding向量的匹配方式,这种方法更为鲁棒,解释性更好。另外论文提出的十字星变形卷积也很好地贴合角点目标检测的场景,增强角点特征

论文: CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection

  • 论文地址:https://arxiv.org/abs/2003.09119
  • 论文代码:https://github.com/KiveeDong/CentripetalNet

Introduction


  CornerNet打开了目标检测的新方式,通过检测角点进行目标的定位,在角点的匹配上,增加了额外embedding向量,向量距离较小的角点即为匹配。而论文认为,这种方法不仅难以训练,而且仅通过物体表面进行预测,缺乏目标的位置信息。对于相似物体,embedding向量很难进行特定的表达,如图1所示,相似的物体会造成错框现象。   为此,论文提出了CentripetalNet,核心在于提出了新的角点匹配方式,额外学习一个向心偏移值,偏移值足够小的角点即为匹配。相对于embedding向量,这种方法更为鲁棒,解释性更好。另外,论文还提出十字星变形卷积,针对角点预测的场景,在特征提取时能够准确地采样关键位置的特征。最后还增加了实例分割分支,能够将网络拓展到实例分割任务中。

CentripetalNet


  如图2所示,CentripetalNet包含四个模块,分别为:

  • 角点预测模块(Corner Prediction Module):用于产生候选角点,这部分跟CornerNet一样。
  • 向心偏移模块(Centripetal Shift Module):预测角点的向心偏移,并根据偏移结果将相近的角点成组。
  • 十字星变形卷积(Cross-star Deformable Convolution):针对角点场景的变形卷积,能够高效地增强角点位置的特征。
  • 实例分割分支(Instance Mask Head):类似MaskRCNN增加实例分割分支,能够提升目标检测的性能以及增加实例分割能力。

Centripetal Shift Module


Centripetal Shift

  对于

bbox^i=(tlx^i,tly^i,brx^i,bry^i)

,几何中心为

(ctx^i, cty^i)=(\frac{tlx^i+brx^i}{2}, \frac{tly^i+bry^i}{2})

,定义左上角点和右下角点的向心偏移为:

log

函数用来减少向心偏移的数值范围,让训练更容易。在训练时,由于非GT角点需要结合角点偏移计算向心偏移,比较复杂,如图a所示,所以仅对GT角点使用smooth L1损失进行向心偏移训练:

Corner Matching

  属于同一组的角点应该有足够近的中心点,所以在得到向心偏移和角点偏移后,可根据角点对应的中心点判断两个角点是否对应。首先将满足几何关系

tlx < brx \wedge tly < bry

的角点组合成预测框,每个预测框的置信度为角点置信度的均值。接着,如图c所示,定义每个预测框的中心区域:

R_{central}

的角点计算为:

0 < \mu \le 1

为中心区域对应预测框边长的比例,根据向心偏移计算出左上角点的中心点

(tl_{ctx}, tl_{cty})

和右下角点的中心点

(br_{ctx}, br_{cty})

,计算满足中心区域关系

(tl^j_{ctx}, tl^j_{cty})\in R^j_{central} \wedge (br^j_{ctx}, br^j_{cty})\in R^j_{central}

的预测框的权值:

  从公式5可以看出,角点对应的中心点的距离越近,预测框的权值越高,对于不满足中心点几何关系的预测框,权值直接设为0,最后,使用权值对置信度进行加权输出。

Cross-star Deformable Convolution


  为了让角点感知目标的位置信息,coner pooling使用max和sum来进行目标信息的水平和垂直传递,导致输出的特征图存在十字星现象,如图4a所示,十字星的边界包含了丰富的上下文信息。为了进一步提取十字星边界的特征,不仅需要更大的感受域,还需要适应其特殊的几何结构,所以论文提出了十字星变形卷积。

  但并不是所有的边界特征都是有用的,对于左上角点而言,由于十字星的左上部边界特征在目标的外部,所以其对左上角点是相对无用的,所以论文使用偏移引导(guiding shift)来显示引导偏移值(offset field)的学习,偏移引导如图b所示。偏移值共通过三个卷积层获得,前两个卷积层转化corner pooling的输出,通过下面的损失函数有监督学习:

\delta

为偏移引导,定义为:

  第三层卷积将特征映射为最终偏移值,内涵了目标的上下文信息和几何信息。

  论文对不同的采样方法进行了可视化,可以看到论文提出的十字星变形卷积的效果符合预期,左上角点对应的采样点均为十字星的右下部边界。

Instance Mask Head


  为了获取实例分割的结果,论文取soft-NMS前的检测结果作为候选框,使用全卷积网络进行mask预测。为了保证检测模块能够提供有效的候选框,先对CentripetalNet预训练几轮,然后取top-k候选框进行RoIAlign得到特征,使用连续四个卷积层提取特征,最后使用反卷积层进行上采样,训练时对每个候选框进行交叉熵损失:

Experiment


  完整的损失函数为:

L_{det}

L_{off}

跟CornerNet定义的一样,为预测框损失和角点偏移损失,

\alpha

设置为0.005。

  目标检测性能对比。

  实例分割性能对比。

  CornerNet/CenterNet/CentripetalNet可视化对比。

Conclusion


  CentripetalNet的核心在于新的角点匹配方式,额外学习一个向心偏移值,偏移值足够小的角点即为匹配,相对于embedding向量的匹配方式,这种方法更为鲁棒,解释性更好。另外论文提出的十字星变形卷积也很好地贴合角点目标检测的场景,增强角点特征。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AIWalker 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Introduction
  • CentripetalNet
  • Centripetal Shift Module
    • Centripetal Shift
      • Corner Matching
      • Cross-star Deformable Convolution
      • Instance Mask Head
      • Experiment
      • Conclusion
      相关产品与服务
      图像识别
      腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档