前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >结构光相移法-多频外差原理+实践(上)

结构光相移法-多频外差原理+实践(上)

作者头像
计算机视觉
发布2020-12-29 10:07:28
1.4K0
发布2020-12-29 10:07:28
举报

01 相移法原理 02 双频外差原理 03 多频率外差原理 04 代码实践

01 相移法原理

结构光法原理其实是跟双目视觉一样的,都是要确定对应“匹配点”,利用“视差”三角关系计算距离,所不同的是:

  • 双目视觉通过“被动”匹配唯一特征点
  • 相移法作为结构光法中的一种,通过主动投影多副相移图案来标记唯一位置。

说明:虽然大多数结构光系统是单目的,但我们可以将其“双目”的,因为投影仪可以看做是一个“逆向”的相机,明白了这点,对于结构光系统一些公式推导就容易很多。

对于“双目”系统来说,最重要的工作是通过唯一标记来标记某一点,假设我们只投射一个周期的数据,我们从投影仪投出去的光栅公式如下:

其中:

比如说四步相移公式:

我们主要关心的是求解出相位主值,因为它对每个像素点是唯一的,假设我们从相机中获取了这四副图像,那怎么反过来求解相位主值?

需要说明的是,虽然这个公式对整副相移图像的,但是这公式对每个像素都是独立的,所以即使我们拿从相机拍摄到经过调制变形的图像来求解,依然可以得到单个像素点唯一的相位主值。

联立4个方程,得到:

无论:

  • 哪台相机
  • 拍摄到什么图像

我们要得到某个像素点的唯一“标记”,也就是这个相位主值,代回这个公式即可,都可以得到唯一值。得到了唯一值,建立匹配关系,就可以利用三角公式进行重建。

其中:横坐标为任意一行的像素,这张图中使用周期为11的像素条纹作为正弦光栅。

02 双频外差原理

解决的方法有很多,分为空域和时域展开两种:

  • 空域展开:依靠空间相邻像素点之间的相位值恢复绝对相位,如果重建表面不连续,则出现解码错误。
  • 时域展开:将每个像素点的相位值进行独立计算,有格雷码和多频外差两种,其中格雷码方法对物理表面问题敏感,并且多投影的图并不能用来提升精度,多频外差精度更高。

当然目前还有更多精度更高、效率更快的相位展开方法,在这里暂时不予讨论,这里主要讨论多频外差原理。

多频外差原理:通过多个不同频率(周期)正弦光栅的相位做差,将小周期的相位主值转化为大周期的相位差,从而使得相位差信号覆盖整个视场,然后再根据相位差来得到整副图像的绝对相位分布。

这里以双频外差为例,原理如图1所示:

注:通常我们说的相位函数的周期,代表的是一个周期正弦函数所占的像素单位个数。

03 多频率外差原理

其可以完成整个视场的无歧义标记。

04 代码实践

依据相移法得到的包裹相位图如下图所示,不同颜色代表不同频率的相位主值:

我们进行叠加后的效果:

在这里,我们可以看到,由两个周期小的相位可以合成一个周期更大的编码图案。

其中:

明白了原理,我们来代码实践一下,需要注意的是,求解出来的相位我们要进行归一化到区间操作

代码语言:javascript
复制
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号


def phase_simulation(WIDTH, T1, T2, T3):
    pha1, pha2, pha3 = np.zeros(shape=WIDTH), np.zeros(shape=WIDTH), np.zeros(shape=WIDTH)
    t1, t2, t3 = 1, 1, 1
    for idx in range(WIDTH):
        if t1 > T1: t1 = 1  # 重置一下
        pha1[idx] = (t1 / T1) * 2 * np.pi
        if t2 > T2: t2 = 1
        pha2[idx] = (t2 / T2) * 2 * np.pi
        if t3 > T3: t3 = 1
        pha3[idx] = (t3 / T3) * 2 * np.pi
        t1 += 1; t2 += 1; t3 += 1
    return pha1, pha2, pha3


def parse_phase(pha1, pha2, T1, T2):
    pha12 = np.zeros_like(pha1)
    # 计算Delta(如果满足条件,输出左侧,否则右侧)
    pha12 = np.where(pha1 >= pha2, pha1 - pha2, pha1 - pha2 + 2 * np.pi)
    # # 跟下面这段代码等价
    # for idx in range(0, pha12.shape[0]):
    #     if pha1[idx] >= pha2[idx]:
    #         pha12[idx] = pha1[idx] - pha2[idx]
    #     else:
    #         pha12[idx] = pha1[idx] - pha2[idx] + 2 * np.pi

    T12 = T1 * T2 / (T2 - T1)
    # 方法1
    pha12 = T2 / (T2 - T1) * pha12
    # # 方法2
    # m = np.round((T2 / (T2 - T1) * pha12 - pha1) / (2 * np.pi))
    # pha12 = 2 * np.pi * m + pha12

    # 归一化到[0,2π]
    min_value, max_value = np.min(pha12), np.max(pha12)
    pha12 = (pha12 - min_value) * (2 * np.pi / (max_value - min_value))
    return pha12, T12


if __name__ == '__main__':
    # 视场宽度
    WIDTH = 854
    # 条纹周期
    T1 = 11
    T2 = 12
    T3 = 13
    pha1, pha2, pha3 = phase_simulation(WIDTH, T1, T2, T3)
    X = np.arange(0, WIDTH)
    plt.plot(X, pha1, label="pha1")
    plt.plot(X, pha2, label="pha2:")
    plt.plot(X, pha3, label="pha3")
    plt.title("相移主值图(仿真)")
    plt.xlabel("像素")
    plt.ylabel("w/rad")
    plt.legend()
    plt.show()

    # 解相位
    pha12, T12 = parse_phase(pha1, pha2, T1, T2)
    pha23, T23 = parse_phase(pha2, pha3, T2, T3)
    pha123, T123 = parse_phase(pha12, pha23, T12, T23)

    plt.plot(X, pha12, label="pha12")
    plt.plot(X, pha23, label="pha23")
    plt.plot(X, pha123, label="pha123")
    plt.title("解出绝对相位")
    plt.xlabel("像素")
    plt.ylabel("w/rad")
    plt.legend()
    plt.show()

可以看出,最终解出的绝对相位线单调递增,每个相位值时唯一的,虽然在一些交界处会有些许误差。

结构光多频外差的原理很简单,而精度这块,其实很大程度依赖于标定、高反处理这些地方。这一期内容将分为上下两期,为了便于理解,不再讲述更多内容,更多我们下一期再讲!怎么拿实际投影拍摄到的光栅图片来还原绝对相位!

备注:作者也是我们「3D视觉从入门到精通」特邀嘉宾:一个超干货的3D视觉学习社区

本文仅做学术分享,如有侵权,请联系删文。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-12-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 计算机视觉工坊 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 01 相移法原理
  • 02 双频外差原理
  • 03 多频率外差原理
  • 04 代码实践
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档