前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Lock和Synchronized

Lock和Synchronized

作者头像
石的三次方
发布2021-01-05 22:48:48
2500
发布2021-01-05 22:48:48
举报

Lock和synchronized

1.Synchronized锁

底层是monitor监视器,每一个对象再创建的时候都会常见一个monitor监视器,在使用synchronized代码块的时候,会在代码块的前后产生一个monitorEnter和monitorexit指令,来标识这是一个同步代码块。

1.1 执行流程

线程遇到同步代码块,给这个对象monitor对象加1,当线程退出当前代码块以后,给这个对象的monitor对象减一,如果monitor指令的值为0则当前线程释放锁。

1.2 反编译源码

「同步代码块反编译」

public void test01(){
        synchronized (this){
            int num = 1 ;
        }
    }

两次monitorexit的作用是避免同步代码块无法跳出,因此存在两种,「正常退出和异常退出」

「同步方法反编译」

public synchronized  void test01(){
            int num = 1 ;
    }

可以发现其没有在同步方法前后添加monitor指令,但是在其底层实际上也是通过monitor指令实现的,只不过相较于同步代码块来说,他是隐式的。

1.3 锁升级

JDK1.5的时候对于synchronzied做了一系列优化操作,增加了诸如:偏向锁,轻量级锁,自旋锁,锁粗化,重量级锁的概念。

1.3.1 偏向锁

在一个线程在执行获取锁的时候,当前线程会在monitor对象中存储指向该线程的ID。当线程再次进入的时候,不需要通过CAS的方法再来进行加锁或者解锁,而是检测偏向锁的ID是不是当前要进行的线程,如果是,直接进入。

偏向锁,「适用于一个线程执行任务的情况」

JDK1.6中,默认是开启的。可以通过-XX:-UseBiasedLocking=false参数关闭偏向锁

1.3.2 轻量级锁

轻量级锁是指锁为偏向锁的时候,该锁被其他线程尝试获取,此时偏向锁升级为轻量级锁,其他线程会通过自旋的方式尝试获取锁,线程不会阻塞,从而提供性能

升级为轻量级锁的情况有两种:

  • 关闭偏向锁
  • 有多个线程竞争偏向锁的时候

「具体实现:」

线程进行代码块以后,如果同步对象锁状态为无锁的状态,虚拟机将首先在当前线程的栈帧中创建一个锁记录的空间。这个空间内存储了当前获取锁的对象。

「使用情况:」

两个线程的互相访问

1.3.3 重量级锁

在有超过2个线程访问同一把锁的时候,锁自动升级为重量级锁,也就是传统的synchronized,此时其他未获取锁的线程会陷入等待状态,不可被中断。

由于依赖于monitor指令,所以其消耗系统资源比较大

「上面的三个阶段就是锁升级的过程」

1.3.4 锁粗化

当在一个循环中,我们多次使用对同一个代码进行加锁,这个时候,JVM会自动实现锁粗化,即在循环外进行添加同步代码块。

「代码案例:」

锁粗化之前:

for (int i = 0; i < 10; i++) {
            synchronized (LockBigDemo.class){
                System.out.println();
            }
        }

锁粗化之后:

synchronized (LockBigDemo.class){
            for (int i = 0; i < 10; i++) {
                    System.out.println();
            }
        }

「本次关于synchronized的底层原理没有以代码的方式展开,之后笔者会出一篇synchronized底层原理剖析的文章」

2. Lock锁

一个类级别的锁,需要手动释放锁。可以选择性的选择设置为公平锁或者不公平锁。等待线程可以被打断。

底层是基于AQS+AOSAQS类完成具体的加锁逻辑,AOS保存获取锁的线程信息

2.1 ReentrantLock

我们以ReentrantLock为例解析一下其加锁的过程。

2.1.1 lock方法

首先通过ReentrantLock的构造方法的布尔值判断创建的锁是公平锁还是非公平锁。

假设现在创建的是非公平锁,他首先会判断锁有没有被获取,如果没有被获取,则直接获取锁;

如果锁已经被获取,执行一次自旋,尝试获取锁。

如果锁已经被获取,则将当前线程封装为AQS队列的一个节点,然后判断当前节点的前驱节点是不是HEAD节点,如果是,尝试获取锁;如果不是。则寻找一个安全点(线程状态位SIGNAL=-1的节点)。

开始不断自旋。判断前节点是不是HEAD节点,如果是获取锁,如果不是挂起。

「源码解读:」

  • 非公平锁lock
final void lock() {
    //判断是否存在锁
            if (compareAndSetState(0, 1))
                //获取锁
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }
public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
//非公平锁的自旋逻辑
protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }

final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
     //获取锁状态
            int c = getState();
     //如果锁没被获取,获取锁
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
    //当前线程已经获取到了锁
            else if (current == getExclusiveOwnerThread()) {
                //线程进入次数增加
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
//将线程封装为一个线程节点,传入锁模式,排他或者共享
private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // 获取尾节点
        Node pred = tail;
    //如果尾节点不为Null,直接将这个线程节点添加到队尾
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
    //为空,自旋设置尾节点
        enq(node);
        return node;
    }

private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            //初始化
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                //将头结点和尾结点都设置为当前节点
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
//尝试入队
final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                //获取节点的前驱节点,如果前驱节点为head节点,则尝试获取锁
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                //如果不是,寻找安全位
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
    //前驱节点已经安全
        if (ws == Node.SIGNAL)
            return true;
    //前驱节点不安全,寻找一个线程状态为`Signal`的节点作为前驱节点
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            //否则直接设置这个前驱节点的线程等待状态值
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

//中断线程
private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
2.1.2 unlock方法

「代码解读:」

public void unlock() {
        sync.release(1);
    }
public final boolean release(int arg) {
    //尝试释放锁
        if (tryRelease(arg)) {
            //获取队列头元素,唤醒该线程节点,执行任务
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
    //判断是否为当前线程拥有锁
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
    //释放成功
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }
private void unparkSuccessor(Node node) {
    
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);
      
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
    //唤醒下一个节点
        if (s != null)
            LockSupport.unpark(s.thread);
    }
2.1.3 Node节点
/** 共享锁,读锁使用 */
        static final Node SHARED = new Node();
        /** 独占锁*/
        static final Node EXCLUSIVE = null;

        /** 不安全线程 */
        static final int CANCELLED =  1;
        /** 需要进行线程唤醒的线程 */
        static final int SIGNAL    = -1;
        /**condition等待中 */
        static final int CONDITION = -2;

  //线程等待状态
  volatile int waitStatus;

        volatile Node prev;

        volatile Node next;

        volatile Thread thread;
        Node nextWaiter;

3. Lock锁和Synchronized的区别

  • Lock锁是API层面,synchronizedCPU源语级别的
  • Lock锁等待线程可以被中断,synchronized等待线程不可以被中断
  • Lock锁可以指定公平锁和非公平锁,synchronized只能为非公平锁
  • Lock锁需要主动释放锁,synchronized执行完代码块以后自动释放锁
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-04-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 石的三次方 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Lock和synchronized
    • 1.Synchronized锁
      • 2. Lock锁
        • 3. Lock锁和Synchronized的区别
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档