前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >视线估计实战,卧槽,我有一个大胆的想法!

视线估计实战,卧槽,我有一个大胆的想法!

作者头像
AI算法与图像处理
发布2021-01-06 11:43:53
2.3K1
发布2021-01-06 11:43:53
举报
文章被收录于专栏:AI算法与图像处理

大家好,我是程序员啊潘。今天要分享一个有趣的实战项目——视线估计,一个相对小众的研究方向,但是未来大有可为。

相关应用

游戏:通过视线估计进行游戏的交互

https://v.youku.com/v_show/id_XNDAzNzc3MjEzNg==.html?spm=a2h0k.11417342.soresults.dtitle

VR:

医疗:gaze在医疗方面的应用主要是两类。一类是用于检测和诊断精神类或心理类的疾病。一个典型例子是自闭症儿童往往表现出与正常儿童不同的gaze行为与模式。另一类是通过基于gaze的交互系统来为一些病人提供便利。如渐冻症患者可以使用眼动仪来完成一些日常活动。

辅助驾驶(智能座舱):gaze在辅助驾驶上有两方面应用。一是检测驾驶员是否疲劳驾驶以及注意力是否集中。二是提供一些交互从而解放双手。

线下零售:我一直认为gaze在零售或者无人超市等领域大有可为,毕竟人的注意力某种程度上反映了其兴趣,可以提供大量的信息。但是我目前并没有看到相关的应用,包括Amazon Go。或许现阶段精度难以达到要求。我导师的公司倒是接过一个超市的项目,通过gaze行为做市场调研。但欧洲公司保密性较高,具体情况不得而知。

其他交互类应用如手机解锁、短视频特效等。

来源:https://zhuanlan.zhihu.com/p/112097446

算法原理和项目实战

好的,介绍了这么多,下面我们来实战一下,老规矩,先看效果

当然我想象中的效果应该是可以替换成下面的样子(本文并没有实现):

代码来源:https://github.com/1996scarlet/Laser-Eye

涉及到的知识点:

1、人脸检测

代码语言:javascript
复制
论文:https://arxiv.org/abs/1905.00641
项目代码:https://github.com/1996scarlet/faster-mobile-retinaface

这里采用的retinaface,这在之前的文章中有介绍过

人脸算法系列(二):RetinaFace论文精读

2、人脸关键点检测

  • 默认使用的是MobileNet-v2 version(1.4M)
  • 可选的其他版本https://github.com/deepinx/deep-face-alignment【37M】

3、头部姿态估计

代码语言:javascript
复制
https://github.com/lincolnhard/head-pose-estimation
使用 dlib和 OpenCV实现头部姿态的估计
(实际使用的是insightface项目中的人脸关键点检测方法)
链接:https://github.com/deepinsight/insightface/tree/master/alignment/coordinateReg
insightface项目经常会更新一些好东西,非常值得持续关注

4、虹膜分割

论文:https://ieeexplore.ieee.org/document/8818661

本文提出了一种基于单目RGB相机的实时精确的三维眼球注视跟踪方法。我们的关键思想是训练一个深度卷积神经网络(DCNN),自动从输入图像中提取每只眼睛的虹膜和瞳孔像素。为了实现这一目标,我们结合Unet[1]和Squeezenet[2]的能力来训练一个高效的卷积神经网络进行像素分类。此外,我们在最大后验框架中跟踪三维眼睛注视状态,该框架在每一帧中顺序搜索最可能的三维眼睛注视状态。当眼睛眨眼时,眼球注视跟踪器会得到不准确的结果。为了提高眼睛注视跟踪器的鲁棒性和准确性,我们进一步扩展了卷积神经网络用于眼睛的近距离检测。我们的系统在台式电脑和智能手机上实时运行。我们已经在直播视频和网络视频上评估了我们的系统,我们的结果表明,该系统对于不同性别、种族、光照条件、姿势、形状和面部表情都是稳健和准确的。与Wang等人[3]的对比表明,我们的方法在使用单一RGB摄像头的3D眼球跟踪方面取得了先进水平。

测试代码:

代码语言:javascript
复制
#!/usr/bin/python3
# -*- coding:utf-8 -*-

from service.head_pose import HeadPoseEstimator
from service.face_alignment import CoordinateAlignmentModel
from service.face_detector import MxnetDetectionModel
from service.iris_localization import IrisLocalizationModel
import cv2
import numpy as np
from numpy import sin, cos, pi, arctan
from numpy.linalg import norm
import time
from queue import Queue
from threading import Thread
import sys

SIN_LEFT_THETA = 2 * sin(pi / 4)
SIN_UP_THETA = sin(pi / 6)


def calculate_3d_gaze(frame, poi, scale=256):
    starts, ends, pupils, centers = poi

    eye_length = norm(starts - ends, axis=1)
    ic_distance = norm(pupils - centers, axis=1)
    zc_distance = norm(pupils - starts, axis=1)

    s0 = (starts[:, 1] - ends[:, 1]) * pupils[:, 0]
    s1 = (starts[:, 0] - ends[:, 0]) * pupils[:, 1]
    s2 = starts[:, 0] * ends[:, 1]
    s3 = starts[:, 1] * ends[:, 0]

    delta_y = (s0 - s1 + s2 - s3) / eye_length / 2
    delta_x = np.sqrt(abs(ic_distance**2 - delta_y**2))

    delta = np.array((delta_x * SIN_LEFT_THETA,
                      delta_y * SIN_UP_THETA))
    delta /= eye_length
    theta, pha = np.arcsin(delta)

    # print(f"THETA:{180 * theta / pi}, PHA:{180 * pha / pi}")
    # delta[0, abs(theta) < 0.1] = 0
    # delta[1, abs(pha) < 0.03] = 0

    inv_judge = zc_distance**2 - delta_y**2 < eye_length**2 / 4

    delta[0, inv_judge] *= -1
    theta[inv_judge] *= -1
    delta *= scale

    # cv2.circle(frame, tuple(pupil.astype(int)), 2, (0, 255, 255), -1)
    # cv2.circle(frame, tuple(center.astype(int)), 1, (0, 0, 255), -1)

    return theta, pha, delta.T


def draw_sticker(src, offset, pupils, landmarks,
                 blink_thd=0.22,
                 arrow_color=(0, 125, 255), copy=False):
    if copy:
        src = src.copy()

    left_eye_hight = landmarks[33, 1] - landmarks[40, 1]
    left_eye_width = landmarks[39, 0] - landmarks[35, 0]

    right_eye_hight = landmarks[87, 1] - landmarks[94, 1]
    right_eye_width = landmarks[93, 0] - landmarks[89, 0]

    for mark in landmarks.reshape(-1, 2).astype(int):
        cv2.circle(src, tuple(mark), radius=1,
                   color=(0, 0, 255), thickness=-1)

    if left_eye_hight / left_eye_width > blink_thd:
        cv2.arrowedLine(src, tuple(pupils[0].astype(int)),
                        tuple((offset+pupils[0]).astype(int)), arrow_color, 2)

    if right_eye_hight / right_eye_width > blink_thd:
        cv2.arrowedLine(src, tuple(pupils[1].astype(int)),
                        tuple((offset+pupils[1]).astype(int)), arrow_color, 2)

    return src


def main(video, gpu_ctx=-1):
    cap = cv2.VideoCapture(video)

    fd = MxnetDetectionModel("weights/16and32", 0, .6, gpu=gpu_ctx)
    fa = CoordinateAlignmentModel('weights/2d106det', 0, gpu=gpu_ctx)
    gs = IrisLocalizationModel("weights/iris_landmark.tflite")
    hp = HeadPoseEstimator("weights/object_points.npy", cap.get(3), cap.get(4))
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter('output.avi',fourcc, 20.0, (960, 540))
    while True:
        ret, frame = cap.read()

        if not ret:
            break

        bboxes = fd.detect(frame)

        for landmarks in fa.get_landmarks(frame, bboxes, calibrate=True):
            # calculate head pose
            _, euler_angle = hp.get_head_pose(landmarks)
            pitch, yaw, roll = euler_angle[:, 0]

            eye_markers = np.take(landmarks, fa.eye_bound, axis=0)
            
            eye_centers = np.average(eye_markers, axis=1)
            # eye_centers = landmarks[[34, 88]]
            
            # eye_lengths = np.linalg.norm(landmarks[[39, 93]] - landmarks[[35, 89]], axis=1)
            eye_lengths = (landmarks[[39, 93]] - landmarks[[35, 89]])[:, 0]

            iris_left = gs.get_mesh(frame, eye_lengths[0], eye_centers[0])
            pupil_left, _ = gs.draw_pupil(iris_left, frame, thickness=1)

            iris_right = gs.get_mesh(frame, eye_lengths[1], eye_centers[1])
            pupil_right, _ = gs.draw_pupil(iris_right, frame, thickness=1)

            pupils = np.array([pupil_left, pupil_right])

            poi = landmarks[[35, 89]], landmarks[[39, 93]], pupils, eye_centers
            theta, pha, delta = calculate_3d_gaze(frame, poi)

            if yaw > 30:
                end_mean = delta[0]
            elif yaw < -30:
                end_mean = delta[1]
            else:
                end_mean = np.average(delta, axis=0)

            if end_mean[0] < 0:
                zeta = arctan(end_mean[1] / end_mean[0]) + pi
            else:
                zeta = arctan(end_mean[1] / (end_mean[0] + 1e-7))

            # print(zeta * 180 / pi)
            # print(zeta)
            if roll < 0:
                roll += 180
            else:
                roll -= 180

            real_angle = zeta + roll * pi / 180
            # real_angle = zeta

            # print("end mean:", end_mean)
            # print(roll, real_angle * 180 / pi)

            R = norm(end_mean)
            offset = R * cos(real_angle), R * sin(real_angle)

            landmarks[[38, 92]] = landmarks[[34, 88]] = eye_centers

            # gs.draw_eye_markers(eye_markers, frame, thickness=1)

            draw_sticker(frame, offset, pupils, landmarks)
        frame = cv2.resize(frame, (960, 540))
        out.write(frame)
        cv2.imshow('res', cv2.resize(frame, (960, 540)))
        # cv2.imshow('res', frame)
        if cv2.waitKey(0) == ord('q'):
            break

    cap.release()
    out.release()

if __name__ == "__main__":
    video = "flame.mp4"
    main(video)

注意事项:

环境配置:

1、官方并没有提供明确的依赖包和相应的版本,本人测试所用的环境(cpu版本)

代码语言:javascript
复制
mxnet 1.7.0
tensorflow 2.4.0

2、在运行时,显示图片需要按空格键,切换到下一个画面。

3、测试的视频在官方项目的asset文件夹下。

视线估计最终获得的结果包括

三个角度:pitch, yaw, roll

虹膜分割的结果,左右眼分割的结果

计算3维虹膜的值

代码来源:https://github.com/1996scarlet/Laser-Eye

最后

好的,到这里,今天的分享就结束了。

最后,希望大家能点一下“赞”、“在看”和分享到朋友圈,你的举手之劳,是我前进的动力!2021,我会努力分享更多的干货,做好内容!


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-01-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI算法与图像处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 相关应用
  • 算法原理和项目实战
  • 最后
相关产品与服务
云直播
云直播(Cloud Streaming Services,CSS)为您提供极速、稳定、专业的云端直播处理服务,根据业务的不同直播场景需求,云直播提供了标准直播、快直播、云导播台三种服务,分别针对大规模实时观看、超低延时直播、便捷云端导播的场景,配合腾讯云视立方·直播 SDK,为您提供一站式的音视频直播解决方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档