前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >C++实现yolov5的OpenVINO部署

C++实现yolov5的OpenVINO部署

作者头像
计算机视觉
发布2021-01-12 14:51:32
1.9K0
发布2021-01-12 14:51:32
举报

[GiantPandaCV导语] 本文介绍了一种使用c++实现的,使用OpenVINO部署yolov5的方法。此方法在2020年9月结束的极市开发者榜单中取得后厨老鼠识别赛题第四名。2020年12月,注意到yolov5有了许多变化,对部署流程重新进行了测试,并进行了整理。希望能给需要的朋友一些参考,节省一些踩坑的时间

模型训练

1. 首先获取yolov5工程

git clone https://github.com/ultralytics/yolov5.git

本文编辑的时间是2020年12月3日,官方最新的releases是v3.1,在v3.0的版本中,官网有如下的声明

  • August 13, 2020**: v3.0 release(https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.

yolov5训练获得的原始的模型以.pt文件方式存储,要转换为OpenVINO的.xml和.bin的模型存储方式,需要经历两次转换.

两次转换所用到的工具无法同时支持nn.Hardswish()函数的转换,v3.0版本时需要切换到v2.0版本替换掉nn.Hardswish()函数才能够完成两次模型转换,当时要完成模型转换非常的麻烦.

在v3.1版本的yolov5中用于进行pt模型转onnx模型的程序对nn.Hardswish()进行了兼容,模型转换过程大为化简.

2. 训练准备

yolov5官方的指南: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data

描述信息准备

在yolov5的文件夹下/yolov5/models/目录下可以找到以下文件

yolov5s.yaml yolov5m.yaml yolov5l.yaml

这三个文件分别对应s(小尺寸模型),m(中尺寸模型)和l(大尺寸模型)的结构描述信息

其中为了实现自己的训练常常需要更改以下两个参数

  • nc 需要识别的类别数量,yolov5原始的默认类别数量为80
  • anchors 通过kmeans等算法根据自己的数据集得出合适的锚框. 这里需要注意:yolov5内部实现了锚框的自动计算训练过程默认使用自适应锚框计算. 经过实际测试,自己通过kmeans算法得到的锚框在特定数据集上能取得更好的性能 在3.执行训练中将提到禁止自动锚框计算的方法.
数据准备

参考官方指南的

  • Create Labels
  • Organize Directories

部分的数据要求

注意标注格式是class x_center y_center width height,其中x_center y_center width height均是根据图像尺寸归一化的0到1之间的数值.

3. 执行训练

python ~/src_repo/yolov5/train.py --batch 16 --epochs 10 --data ~/src_repo/rat.yaml --cfg ~/src_repo/yolov5/models/yolov5s.yaml --weights ""

其中

  • --data 参数后面需要填充的是训练数据的说明文件.其中需要说明训练集,测试集,种类数目和种类名称等信息,具体格式可以参考yolov5/data/coco.yaml.
  • --cfg 为在训练准备阶段完成的模型结构描述文件.
  • --weights 后面跟预训练模型的路径,如果是""则重新训练一个模型.推荐使用预训练模型继续训练,不使用该参数则默认使用预训练模型.
  • --noautoanchor 该参数可选,使用该参数则禁止自适应anchor计算,使用--cfg文件中提供的原始锚框.

模型转换

经过训练,模型的原始存储格式为.pt格式,为了实现OpenVINO部署,需要首先转换为.onnx的存储格式,之后再转化为OpenVINO需要的.xml和.bin的存储格式.

1. pt格式转onnx格式

这一步的转换主要由yolov5/models/export.py脚本实现.

可以参考yolov5提供的简单教程:https://github.com/ultralytics/yolov5/issues/251

使用该教程中的方法可以获取onnx模型,但直接按照官方方式获取的onnx模型其中存在OpenVINO模型转换中不支持的运算,因此,使用该脚本之前需要进行一些更改:

  • opset_version

在/yolov5/models/export.py中

torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
                          output_names=['classes', 'boxes'] if y is None else ['output'])

opset_version=12,将导致后面的OpenVINO模型装换时遇到未支持的运算 因此设置为opset_version=10.

  • Detect layer export
model.model[-1].export = True  

设置为True则Detect层(包含nms,锚框计算等)不会输出到模型中.

设置为False包含Detect层的模型无法通过onnx到OpenVINO格式模型的转换.

需要执行如下指令:

python ./models/export.py --weight .pt文件路径 --img 640 --batch 1

需要注意的是在填入的.pt文件路径不存在时,该程序会自动下载官方预训练的模型作为转换的原始模型,转换完成则获得onnx格式的模型.

转换完成后可以使用Netron:https://github.com/lutzroeder/netron.git 进行可视化.对于陌生的模型,该可视化工具对模型结构的认识有很大的帮助.

net.jpg

2. onnx格式转换OpenVINO的xml和bin格式

OpenVINO是一个功能丰富的跨平台边缘加速工具箱,本文用到了其中的模型优化工具和推理引擎两部分内容.

OpenVINO的安装配置可以参考https://docs.openvinotoolkit.org/2019_R2/_docs_install_guides_installing_openvino_linux.html ,本文的所有实现基于2020.4版本,为确保可用,建议下载2020.4版本的OpenVINO.

安装完成后在~/.bashrc文件中添加如下内容,用于在终端启动时配置环境变量.

source /opt/intel/openvino/bin/setupvars.sh
source /opt/intel/openvino/opencv/setupvars.sh

安装完成后运行如下脚本实现onnx模型到xml bin模型的转换.

python /opt/intel/openvino/deployment_tools/model_optimizer/mo_onnx.py --input_model .onnx文件路径  --output_dir 期望模型输出的路径

运行成功之后会获得.xml和.bin文件,xml和bin是OpenVINO中的模型存储方式,后续将基于bin和xml文件进行部署.该模型转换工具还有定点化等模型优化功能,有兴趣可以自己试试.

使用OpenVINO进行推理部署

OpenVINO除了模型优化工具外,还提供了一套运行时推理引擎.

想使用OpenVINO的模型进行推理部署,有两种方式,第一种方式是使用OpenVINO原生的sdk,另外一种方式是使用支持OpenVINO的opencv(比如OpenVINO自带的opencv)进行部署,本文对原生sdk的部署方式进行介绍.

OpenVINO提供了相对丰富的例程,本文中实现的yolov5的部署参考了/opt/intel/openvino/deployment_tools/inference_engine/demos/object_detection_demo_yolov3_async文件夹中yolov3的实现方式.

1. 推理引擎的初始化

首先需要进行推理引擎的初始化,此部分代码封装在detector.cpp的init函数.

主要流程如下:

Core ie;
//读入xml文件,该函数会在xml文件的目录下自动读取相应的bin文件,无需手动指定
auto cnnNetwork = ie.ReadNetwork(_xml_path); 
//从模型中获取输入数据的格式信息
InputsDataMap inputInfo(cnnNetwork.getInputsInfo());
InputInfo::Ptr& input = inputInfo.begin()->second;
_input_name = inputInfo.begin()->first;
input->setPrecision(Precision::FP32);
input->getInputData()->setLayout(Layout::NCHW);
ICNNNetwork::InputShapes inputShapes = cnnNetwork.getInputShapes();
SizeVector& inSizeVector = inputShapes.begin()->second;
cnnNetwork.reshape(inputShapes);
//从模型中获取推断结果的格式
_outputinfo = OutputsDataMap(cnnNetwork.getOutputsInfo());
for (auto &output : _outputinfo) {
    output.second->setPrecision(Precision::FP32);
}
//获取可执行网络,这里的CPU指的是推断运行的器件,可选的还有"GPU",这里的GPU指的是intel芯片内部的核显
//配置好核显所需的GPU运行环境,使用GPU模式进行的推理速度上有很大提升,这里先拿CPU部署后面会提到GPU环境的配置方式
_network =  ie.LoadNetwork(cnnNetwork, "CPU");

2. 数据准备

为了适配网络的输入数据格式要求,需要对原始的opencv读取的Mat数据进行预处理.

  • resize

最简单的方式是将输入图像直接resize到640*640尺寸,此种方式会造成部分物体失真变形,识别准确率会受到部分影响,简单起见,在demo代码里使用了该方式.

在竞赛代码中,为了追求正确率,图像缩放的时候需要按图像原始比例将图像的长或宽缩放到640.假设长被放大到640,宽按照长的变换比例无法达到640,则在图像的两边填充黑边确保输入图像总尺寸为640*640.竞赛代码中使用了该种缩放方式,需要注意的是如果使用该种缩放方式,在获取结果时需要将结果转换为在原始图像中的坐标.

  • 颜色通道转换

鉴于opencv和pytorch的颜色通道差异,opencv是BGR通道,pytorch是RGB,在输入网络之前,需要进行通道转换.

  • 推断请求和blob填充
InferRequest::Ptr infer_request = _network.CreateInferRequestPtr();
Blob::Ptr frameBlob = infer_request->GetBlob(_input_name);
InferenceEngine::LockedMemory<void> blobMapped = InferenceEngine::as<InferenceEngine::MemoryBlob>(frameBlob)->wmap();
float* blob_data = blobMapped.as<float*>();
//nchw
for(size_t row =0;row<640;row++){
    for(size_t col=0;col<640;col++){
        for(size_t ch =0;ch<3;ch++){
            //将图像转换为浮点型填入模型
            blob_data[img_size*ch + row*640 + col] = float(inframe.at<Vec3b>(row,col)[ch])/255.0f;
        }
    }
}

3. 推断执行与解析

  • 推断执行
infer_request->Infer();
  • 获取推断结果

从Netron的可视化结果可知

output.png

网络只包含到输出三个检测头的部分,三个检测头分别对应80,40,和20的栅格尺寸,因此需要对三种尺寸的检测头输出结果依次解析,具体的解析过程在parse_yolov5函数中进行了实现:

//获取各层结果
vector<Rect> origin_rect;                     //保存原始的框信息
vector<float> origin_rect_cof;            //保存框对应的置信度信息
int s[3] = {80,40,20};
int i=0;
for (auto &output : _outputinfo) {
    auto output_name = output.first;
    Blob::Ptr blob = infer_request->GetBlob(output_name);
    parse_yolov5(blob,s[i],_cof_threshold,origin_rect,origin_rect_cof);
    ++i;
}
  • 对检测头的内容进行解析

这部分主要是使用c++将yolov5代码中的detect层内容重新实现一下,主要代码实现如下:

//注意此处的阈值是框和物体prob乘积的阈值
bool Detector::parse_yolov5(const Blob::Ptr &blob,int net_grid,float cof_threshold,
    vector<Rect>& o_rect,vector<float>& o_rect_cof){
    vector<int> anchors = get_anchors(net_grid);
    LockedMemory<const void> blobMapped = as<MemoryBlob>(blob)->rmap();
    const float *output_blob = blobMapped.as<float *>();
    //80个类是85,一个类是6,n个类是n+5
    //int item_size = 6;
    int item_size = 85;
    size_t anchor_n = 3;
    for(int n=0;n<anchor_n;++n)
        for(int i=0;i<net_grid;++i)
            for(int j=0;j<net_grid;++j)
            {
                double box_prob = output_blob[n*net_grid*net_grid*item_size + i*net_grid*item_size + j *item_size+ 4];
                box_prob = sigmoid(box_prob);
                //框置信度不满足则整体置信度不满足
                if(box_prob < cof_threshold)
                    continue;
                
                //注意此处输出为中心点坐标,需要转化为角点坐标
                double x = output_blob[n*net_grid*net_grid*item_size + i*net_grid*item_size + j*item_size + 0];
                double y = output_blob[n*net_grid*net_grid*item_size + i*net_grid*item_size + j*item_size + 1];
                double w = output_blob[n*net_grid*net_grid*item_size + i*net_grid*item_size + j*item_size + 2];
                double h = output_blob[n*net_grid*net_grid*item_size + i*net_grid*item_size + j *item_size+ 3];
               
                double max_prob = 0;
                int idx=0;
                for(int t=5;t<85;++t){
                    double tp= output_blob[n*net_grid*net_grid*item_size + i*net_grid*item_size + j *item_size+ t];
                    tp = sigmoid(tp);
                    if(tp > max_prob){
                        max_prob = tp;
                        idx = t;
                    }
                }
                float cof = box_prob * max_prob;                
                //对于边框置信度小于阈值的边框,不关心其他数值,不进行计算减少计算量
                if(cof < cof_threshold)
                    continue;

                x = (sigmoid(x)*2 - 0.5 + j)*640.0f/net_grid;
                y = (sigmoid(y)*2 - 0.5 + i)*640.0f/net_grid;
                w = pow(sigmoid(w)*2,2) * anchors[n*2];
                h = pow(sigmoid(h)*2,2) * anchors[n*2 + 1];

                double r_x = x - w/2;
                double r_y = y - h/2;
                Rect rect = Rect(round(r_x),round(r_y),round(w),round(h));
                o_rect.push_back(rect);
                o_rect_cof.push_back(cof);
            }
    if(o_rect.size() == 0) return false;
    else return true;
}

这一部分最艰难的是搞清楚输出数据的排列方式,一开始我也试了很多次,最后才得到了正确的输出.

需要注意的一点是,按照输出排列方式读取的数值不是最终我们需要的结果,需要进行一些计算来进行转换,

转换的依据可以参考yolov5/models/yolo.py中forward函数的实现.

注意这里有一个参数cof_threshold,其计算方式是框置信度乘以物品置信度,如果识别效果不佳,则需要对该数值进行调整.

  • NMS获取最终结果

经过以上步骤,原始的框信息存储在origin_rect变量中,还需要通过NMS去除同一个物体多余的框.

OpenVNIO自带的opencv提供了NMS的一种实现,因而直接进行调用.

 vector<int> final_id;
    dnn::NMSBoxes(origin_rect,origin_rect_cof,_cof_threshold,_nms_area_threshold,final_id);
    //根据final_id获取最终结果
    for(int i=0;i<final_id.size();++i){
        Rect resize_rect= origin_rect[final_id[i]];
        detected_objects.push_back(Object{
            origin_rect_cof[final_id[i]],
            "",resize_rect
        });
    }

其中origin_rect为原始矩形,origin_rect_cof为矩形对应的置信度,_cof_threshold为置信度(框置信度乘以物品置信度)阈值,_nms_area_threshold是重叠百分比多少则算为一个物体的阈值,final_id为目标矩形在origin_rect中的下标.

4. 性能测试

计时实现如下:

auto start = chrono::high_resolution_clock::now();
auto end = chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end - start;
cout<<"use "<<diff.count()<<" s" << endl;

原始的未经优化的CPU运行的yolov5,推理时间在240ms左右,测试平台为intel corei7 6700hq.

检测结果如下:

检测结果

推理加速

  • 使用核显GPU进行计算

_network =  ie.LoadNetwork(cnnNetwork, "CPU");

改为

_network =  ie.LoadNetwork(cnnNetwork, "GPU");

如果OpenVINO环境配置设置无误程序应该可以直接运行.

检测环境是否配置无误的方法是运行:

/opt/intel/openvino/deployment_tools/demo中的./demo_security_barrier_camera.sh

若成功运行则cpu环境正常.

./demo_security_barrier_camera.sh -d GPU 运行正常则gpu环境运行正常.

  • 使用openmp进行并行化

在推理之外的数据预处理和解析中存在大量循环,这些循环都可以利用openmp进行并行优化.

  • 模型优化如定点化为int8类型

在模型转换时通过设置参数可以实现模型的定点化.

git项目使用

项目地址:https://github.com/fb029ed/yolov5_cpp_openvino

  • demo部分完成了yolov5原始模型的部署

使用方法为依次执行

cd ./demo
mkdir build 
cd build
cmake ..
make 
./detect_test
  • cvmart_competition部分为开发者榜单竞赛的参赛代码,不能直接运行仅供参考

本文仅做学术分享,如有侵权,请联系删文。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-01-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 计算机视觉工坊 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 模型训练
    • 1. 首先获取yolov5工程
      • 2. 训练准备
        • 描述信息准备
        • 数据准备
      • 3. 执行训练
      • 模型转换
        • 1. pt格式转onnx格式
          • 2. onnx格式转换OpenVINO的xml和bin格式
          • 使用OpenVINO进行推理部署
            • 1. 推理引擎的初始化
              • 2. 数据准备
                • 3. 推断执行与解析
                  • 4. 性能测试
                  • 推理加速
                  • git项目使用
                  相关产品与服务
                  图像识别
                  腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档