前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >C++ OpenCV透视变换综合练习

C++ OpenCV透视变换综合练习

作者头像
Vaccae
发布2021-01-18 11:06:22
9890
发布2021-01-18 11:06:22
举报
文章被收录于专栏:微卡智享微卡智享

前言

以前的文章《C++ OpenCV之透视变换》介绍过透视变换,当时主要是自己固定的变换坐标点,所以在想可不可以做一个通过轮廓检测后自适应的透视变换,实现的思路通过检测主体的轮廓,使用外接矩形和多边形拟合的四个最边的点进行透视变换。

实现效果

#

实现思路

1

图像灰度图,高斯滤波、二值化

2

形态学开操作,Canny边缘检测

3

查找轮廓,遍历轮廓判断周长大于图像宽度的进行多边形拟合

4

判断拟合的点大于4个的获取到最小旋转矩形

5

通过多边形拟合的点计算出离最小旋转矩形最近的4个点

6

找到轮廓最小外接矩形作为透视变换的坐标

7

将5、6的步骤两个坐标点计算透视变换矩阵

8

透视变换

重点说明

微卡智享

01

排序旋转矩形的坐标点

图片来自网络

获取旋转矩形的函数minAreaRect( )中,四个顶点中y值最大的顶点为p[0],p[0]围着center顺时针旋转,依次经过的顶点为p[1],p[2],p[3]。角度参数angle 是P[0]发出的平行于x轴的射线,逆时针旋转,与碰到的第一个边的夹角,取值范围[-90~0]。注:逆时针旋转角度为负。

在透视变换的4个顶点的顺序为左上,右上,右下,左下,所以根据上面的原理,我们要写一个4点的重新排序,把4个顶点的顺序按透视变换的需要修改过来。

代码语言:javascript
复制
//重新排序旋转矩形坐标点void SortRotatedRectPoints(Point2f vetPoints[], RotatedRect rect){  rect.points(vetPoints);
  cout << vetPoints[0] << vetPoints[1] << vetPoints[2] << vetPoints[3] << endl;  cout << rect.angle << endl;
  Point2f curpoint;  //根据Rect的坐标点,Y轴最大的为P[0],p[0]围着center顺时针旋转,   //旋转角度为负的话即是P[0]在左下角,为正P[0]是右下角    //重新排序坐标点  if (rect.angle > 0) {    curpoint = vetPoints[0];    vetPoints[0] = vetPoints[2];    vetPoints[2] = curpoint;    curpoint = vetPoints[1];    vetPoints[1] = vetPoints[3];    vetPoints[3] = curpoint;  }  else if (rect.angle < 0) {    curpoint = vetPoints[0];    vetPoints[0] = vetPoints[1];    vetPoints[1] = vetPoints[2];    vetPoints[2] = vetPoints[3];    vetPoints[3] = curpoint;  }
}

02

计算多边形拟合需要透视变换的点

通过多边形拟合出来的点比较多,而使用透视变换也是只要4个点,如果使用最小旋转矩形的4个点没有什么效果,如上图中红色是多边形拟合的点,蓝色框为最小旋转矩形的点,如果用这个点无法实现透视变换的效果,所以通过遍历了多边形拟合的点,计算每个点到最小旋转矩形的距离最近的4个点,形成了上图中的白色框,虽然不完美,但是可以透视变换的效果。

距离的计算用的是欧几里德距离,然后对比找到最近的4个点。

代码语言:javascript
复制
//根据最小矩形点找最近的四边形点//第一参数为输出的点,第二个参数为矩形的4个点,第三个为多边形拟合的点 void GetPointsFromRect(Point2f vetPoints[], Point2f rectPoints[], vector<Point> convex){  //定义最远的4个点,0--左上, 1--右上, 2--右下  3--左下  float ltdist = 99999999.9f;  //左上的最大距离   float rtdist = 99999999.9f;  //右上的最大距离   float rbdist = 99999999.9f;  //右下的最大距离   float lbdist = 99999999.9f;  //左下的最大距离  float curdist = 0.0f; //当前点的计算距离  
  for (auto curpoint : convex) {    //计算左上点的距离     curdist = CalcPointDistance(rectPoints[0], curpoint);    if (curdist < ltdist) {      ltdist = curdist;      vetPoints[0] = curpoint;    }    //计算右上角的点距离    curdist = CalcPointDistance(rectPoints[1], curpoint);    if (curdist < rtdist) {      rtdist = curdist;      vetPoints[1] = curpoint;    }    //计算右下角点的距离    curdist = CalcPointDistance(rectPoints[2], curpoint);    if (curdist < rbdist) {      rbdist = curdist;      vetPoints[2] = curpoint;    }    //计算左下角点的距离    curdist = CalcPointDistance(rectPoints[3], curpoint);    if (curdist < lbdist) {      lbdist = curdist;      vetPoints[3] = curpoint;    }  }}
//计算两点间的距离float CalcPointDistance(Point2f point1, Point2f point2){  //计算两个点的Point差值  Point2f tmppoint = point1 - point2;  //利用欧几里德距离计算H  return sqrt(pow(tmppoint.x, 2) + pow(tmppoint.y, 2));}

TIPS

距离计算时一开始用的是旋转矩形的中心点离多边形拟合按左上,右上,右下,左下的方向找最远的4个,但是在某些斜的角度比较厉害的时候,这个计算问题不小,所以后来改为离最小旋转矩形的点最近的来找了。按中心点找最远距离的函数代码没删,一并贴上来。

完整代码

代码语言:javascript
复制
#include<iostream>#include<opencv2/opencv.hpp>
using namespace std;using namespace cv;
//根据中心点找四角最远的点void GetRectPoints(Point2f vetPoints[], Point2f center, vector<Point> convex);//根据最小矩形点找最近的四边形点void GetPointsFromRect(Point2f vetPoints[], Point2f rectPoints[], vector<Point> convex);
//排序旋转矩形坐标点void SortRotatedRectPoints(Point2f vetPoints[], RotatedRect rect);//计算距离float CalcPointDistance(Point2f point1, Point2f point2);


int main(int argc, char** argv) {
  Mat src = imread("E:/DCIM/tsnew.jpg");  Mat gray, dst, dst2, result;  //图像缩放  resize(src, gray, Size(0, 0), 0.2, 0.2);  imshow("src", gray);
  //灰度图  cvtColor(gray, dst, COLOR_BGRA2GRAY);
  //高斯滤波  GaussianBlur(dst, dst, Size(3, 3), 0.5, 0.5);  imshow("gray", dst);
  //二值化  threshold(dst, dst2, 0, 255, THRESH_BINARY | THRESH_OTSU);  imshow("thresh", dst2);
  //形态学开操作  Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));  morphologyEx(dst2, dst2, MORPH_OPEN, kernel);  imshow("morph", dst2);
  //Canny边缘检测  Canny(dst2, result, 127, 255, 7, true);  imshow("canny", result);
  //查找轮廓  vector<vector<Point>> contours;  findContours(result, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
  cout << contours.size() << endl;  vector<vector<Point>> contours_poly(contours.size());  Mat tmpgray;  gray.copyTo(tmpgray);  for (int i = 0; i < contours.size(); ++i) {    //计算轮廓周长,大于图像宽度的才算主体    double dlen = arcLength(contours[i], true);    if (dlen > gray.cols) {      //多边形拟合      approxPolyDP(Mat(contours[i]), contours_poly[i], 10, true);
      cout << "当前:" << i << " 点数:" << contours_poly[i].size() << endl;            if (contours_poly[i].size() >= 4) {        //获取最小旋转矩形        RotatedRect rRect = minAreaRect(contours_poly[i]);        Point2f vertices[4];        //重新排序矩形坐标点,按左上,右上,右下,左下顺序        SortRotatedRectPoints(vertices, rRect);
        cout << vertices[0] << vertices[1] << vertices[2] << vertices[3] << endl;
        //根据获得的4个点画线        for (int k = 0; k < 4; ++k) {          line(gray, vertices[k], vertices[(k + 1) % 4], Scalar(255, 0, 0));        }
        //多边形拟合的画出轮廓        drawContours(gray, contours_poly, i, Scalar(0, 0, 255));
        //计算四边形的四点坐标        Point2f rPoints[4];        //GetRectPoints(rPoints, rRect.center, contours_poly[i]);        GetPointsFromRect(rPoints, vertices, contours_poly[i]);        for (int k = 0; k < 4; ++k) {          line(gray, rPoints[k], rPoints[(k + 1) % 4], Scalar(255, 255, 255));        }

        //根据最小矩形和多边形拟合的最大四个点计算透视变换矩阵            //重新排序多边形拟合的4点        Rect rect = rRect.boundingRect();        rectangle(gray, rect, Scalar(0, 0, 0));
        Point2f rectPoint[4];        rectPoint[0] = Point2f(rect.x, rect.y);        rectPoint[1] = Point2f(rect.x + rect.width, rect.y);        rectPoint[2] = Point2f(rect.x + rect.width, rect.y + rect.height);        rectPoint[3] = Point2f(rect.x, rect.y + rect.height);               //vector<Point> vecpt(vertices, vertices + 4);        //GetRectPoints(vertices, rRect.center, vecpt);
        //计算透视变换矩阵            Mat warpmatrix = getPerspectiveTransform(rPoints, rectPoint);        Mat resultimg;                //透视变换        warpPerspective(tmpgray, resultimg, warpmatrix, resultimg.size(), INTER_LINEAR);        imshow("resultimg", resultimg);
      }    }  }  imshow("src2", gray);
  waitKey(0);  return 0;}
//根据中心点找最远的四个点void GetRectPoints(Point2f vetPoints[], Point2f center, vector<Point> convex){  //定义最远的4个点,0--左上, 1--右上, 2--右下  3--左下  float ltdist = 0.0f;  //左上的最大距离   float rtdist = 0.0f;  //右上的最大距离   float rbdist = 0.0f;  //右下的最大距离   float lbdist = 0.0f;  //左下的最大距离
  for (auto curpoint : convex) {    //计算点的距离     float curdist = CalcPointDistance(center, curpoint);
    if (curpoint.x < center.x && curpoint.y < center.y)    {      //判断是否在左上      if (curdist > ltdist) {        ltdist = curdist;        vetPoints[0] = curpoint;      }    }    else if (curpoint.x > center.x && curpoint.y < center.y) {      //判断在右上      if (curdist > rtdist) {        rtdist = curdist;        vetPoints[1] = curpoint;      }    }    else if (curpoint.x > center.x && curpoint.y > center.y) {      //判断在右下      if (curdist > rbdist) {        rbdist = curdist;        vetPoints[2] = curpoint;      }    }    else if (curpoint.x < center.x && curpoint.y > center.y) {      //判断在左下      if (curdist > lbdist) {        lbdist = curdist;        vetPoints[3] = curpoint;      }    }
  }  }
//根据最小矩形点找最近的四边形点//第一参数为输出的点,第二个参数为矩形的4个点,第三个为多边形拟合的点 void GetPointsFromRect(Point2f vetPoints[], Point2f rectPoints[], vector<Point> convex){  //定义最远的4个点,0--左上, 1--右上, 2--右下  3--左下  float ltdist = 99999999.9f;  //左上的最大距离   float rtdist = 99999999.9f;  //右上的最大距离   float rbdist = 99999999.9f;  //右下的最大距离   float lbdist = 99999999.9f;  //左下的最大距离  float curdist = 0.0f; //当前点的计算距离  
  for (auto curpoint : convex) {    //计算左上点的距离     curdist = CalcPointDistance(rectPoints[0], curpoint);    if (curdist < ltdist) {      ltdist = curdist;      vetPoints[0] = curpoint;    }    //计算右上角的点距离    curdist = CalcPointDistance(rectPoints[1], curpoint);    if (curdist < rtdist) {      rtdist = curdist;      vetPoints[1] = curpoint;    }    //计算右下角点的距离    curdist = CalcPointDistance(rectPoints[2], curpoint);    if (curdist < rbdist) {      rbdist = curdist;      vetPoints[2] = curpoint;    }    //计算左下角点的距离    curdist = CalcPointDistance(rectPoints[3], curpoint);    if (curdist < lbdist) {      lbdist = curdist;      vetPoints[3] = curpoint;    }  }}
//重新排序旋转矩形坐标点void SortRotatedRectPoints(Point2f vetPoints[], RotatedRect rect){  rect.points(vetPoints);
  cout << vetPoints[0] << vetPoints[1] << vetPoints[2] << vetPoints[3] << endl;  cout << rect.angle << endl;
  Point2f curpoint;  //根据Rect的坐标点,Y轴最大的为P[0],p[0]围着center顺时针旋转,   //旋转角度为负的话即是P[0]在左下角,为正P[0]是右下角    //重新排序坐标点  if (rect.angle > 0) {    curpoint = vetPoints[0];    vetPoints[0] = vetPoints[2];    vetPoints[2] = curpoint;    curpoint = vetPoints[1];    vetPoints[1] = vetPoints[3];    vetPoints[3] = curpoint;  }  else if (rect.angle < 0) {    curpoint = vetPoints[0];    vetPoints[0] = vetPoints[1];    vetPoints[1] = vetPoints[2];    vetPoints[2] = vetPoints[3];    vetPoints[3] = curpoint;  }
}
//计算两点间的距离float CalcPointDistance(Point2f point1, Point2f point2){  //计算两个点的Point差值  Point2f tmppoint = point1 - point2;  //利用欧几里德距离计算H  return sqrt(pow(tmppoint.x, 2) + pow(tmppoint.y, 2));}

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-01-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 微卡智享 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 完整代码
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档