Zabbix3.4分区表配置
当代张思德
2013年开始使用Zabbix,2014-2016年负责Zabbix二次开发及架构设计,目前从事PaaS平台及微服务的开发和运维工作,Zabbix实践爱好者,Cactifans作者,golang爱好者
【老张监控技术】专栏
Zabbix3.4新功能介绍 (一):Preprocessing
在使用zabbix的过程中,随着时间的推移,数据库中的历史数据会越来越多,会发现打开页面,查询数据等会变慢。zabbix 自带的 housekeeper会定时清理(默认一小时清理一次)旧的数据。不过在 housekeeper清理过中,会导致数据库负载极具增加。这里介绍另外一种办法,就是对几个历史数据表做分区表(partition table)可按照时间(每天)为维度,把历史数据存到各个分区表中,这样做有以下好处: 1.加快查询速度 2.快速清理过去一时间的历史数据(删除分区表)
配置
这里以zabbix3.4版本为例。使用itnihao的脚本即可(本人做了稍加修改):
下载脚本到并赋予可执行权限,默认脚本详情数据保留30天,趋势数据保留12个月,可根据实际情况修改。修改脚本以下地方即可
daily_history_min=30 monthly_history_min=12
脚本里默认的zabbix数据库主机为localhost,用户为zabbix,密码为zabbix,如果你的信息不是这个,可以修改脚本里的如下对应信息
DBHOST=localhost
DBUSER=zabbix
DBPASS=zabbix
修改好之后,赋予可执行权限。
分区
注意:执行分区表之前建议先停止zabbix server,如果不停止可能导致意外事件,备份好zabbix server数据库。因此建议安装好zabbix server之后就进行分区表。
./partitiontables_gt_zbx34.sh
完整执行过程如下
[root@localhost opt]# ./partitiontables_gt_zbx34.sh Ready to partition tables.
Ready to update permissions of Zabbix user to create routines
Enter root DB user: root
Enter root password: root
Warning: Using a password on the command line interface can be insecure.
以上要输入数据库的root用户和root密码
Do you want to backup the database (recommended) (Y/n): nAre you certain you have a backup (y/N): y
是否需要备份数据库,这里我选n(之前备份过) 是否确认已经备份,y
Ready to proceed:Starting yearly partioning at: 2018and ending at: 2018With 30 days of daily historyReady to proceed (Y/n): y
分区表基本信息,确认执行
Altering table: history
Altering table: history_log
Altering table: history_str
Altering table: history_text
Altering table: history_uint
Altering table: trends
Altering table: trends_uint
Creating monthly partitions for table: trendsCreating monthly partitions for table: trends_uint
Creating daily partitions for table: historyCreating daily partitions for table: history_logCreating daily partitions for table: history_strCreating daily partitions for table: history_textCreating daily partitions for table: history_uint
Ready to apply script to database, this may take a while.(Y/n): yWarning: Using a password on the command line interface can be insecure.Altering tables
history
history_log
history_str
history_text
history_uint
trends
trends_uint
trends
trends_uint
history
history_log
history_str
history_text
history_uint
Installing procedures
If Zabbix Version = 2.0 Do you want to update the /etc/zabbix/zabbix_server.confto disable housekeeping (Y/n): n
Do you want to update the crontab (Y/n): yThe crontab entry can be either in /etc/cron.daily, or addedto the crontab for rootDo you want to add this to the /etc/cron.daily directory (Y/n): yEnter email of who should get the daily housekeeping reports: test@126.com
如果无错误,表示分区表创建成功。
确认
查看/etc/cron.daily/目录下是否有zabbixhousekeeping脚本,内容为
#!/bin/bash/usr/local/zabbix/cron.d/housekeeping.sh
查看housekeeping.sh脚本,内容如下
#!/bin/bashMAILTO=test@126.com
tmpfile=/tmp/housekeeping$$
date >
tmpfile 2>&1/usr/bin/mail -s "Zabbix MySql Partition Housekeeping"
每次分区大约在每晚凌晨3点左右执行,执行成功后,脚本会用mail程序把执行结果发送到上面的邮箱,如果不需要可以删除mail 一行即可。 邮件内容大概如图
即可看到删除过期的数据分区表,并建立新的分区表。
查看
如果要具体查看分区表的情况,可以进入zabbix数据库,执行以下SQL语句查看histroy表的分区情况
use zabbix;select
partition_name part,
partition_expression expr, partition_description descr,
table_rows from information_schema.partitions where table_schema = schema()
and table_name='history';
结果如下
+-----------+--------+------------+------------+| part | expr | descr | table_rows |+-----------+--------+------------+------------+| p20180126 | clock | 1516982400 | 0 || p20180127 | clock | 1517068800 | 0 || p20180128 | clock | 1517155200 | 0 || p20180129 | clock | 1517241600 | 0 || p20180130 | clock | 1517328000 | 0 || p20180131 | clock | 1517414400 | 0 || p20180201 | clock | 1517500800 | 0 || p20180202 | clock | 1517587200 | 0 || p20180203 | clock | 1517673600 | 0 || p20180204 | clock | 1517760000 | 0 || p20180205 | clock | 1517846400 | 0 || p20180206 | clock | 1517932800 | 0 || p20180207 | clock | 1518019200 | 0 || p20180208 | clock | 1518105600 | 0 || p20180209 | clock | 1518192000 | 0 || p20180210 | clock | 1518278400 | 0 || p20180211 | clock | 1518364800 | 0 || p20180212 | clock | 1518451200 | 0 || p20180213 | clock | 1518537600 | 0 || p20180214 | clock | 1518624000 | 0 || p20180215 | clock | 1518710400 | 0 || p20180216 | clock | 1518796800 | 0 || p20180217 | clock | 1518883200 | 0 || p20180218 | clock | 1518969600 | 0 || p20180219 | clock | 1519056000 | 0 || p20180220 | clock | 1519142400 | 0 || p20180221 | clock | 1519228800 | 0 || p20180222 | clock | 1519315200 | 0 || p20180223 | clock | 1519401600 | 0 || p20180224 | clock | 1519488000 | 0 || p20180225 | clock | 1519574400 | 204 || p20180226 | clock | 1519660800 | 0 || p20180227 | clock | 1519747200 | 0 || p20180228 | clock | 1519833600 | 0 || p20180301 | clock | 1519920000 | 0 || p20180302 | clock | 1520006400 | 0 || p20180303 | clock | 1520092800 | 0 || p20180304 | clock | 1520179200 | 0 |+-----------+--------+------------+------------+38 rows in set (0.00 sec)
可以看到已经按照事件维度分区,和表中数据行数,分区表成功。