专栏首页CDA数据分析师一张好的图胜过千言万语!数据可视化都经历了怎样的发展历程

一张好的图胜过千言万语!数据可视化都经历了怎样的发展历程


CDA数据分析师 出品

编译:Mika

【导读】

信息爆炸时代,经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。

在一次TED演讲中,信息设计师汤米·麦考尔追溯了长达几个世纪的图形和图表的演变过程,并展示了复杂的数据是如何通过处理,演变为清晰、美观的可视化形式的。

点击下方视频,先睹为快:

https://v.qq.com/x/page/r3225lwmmd1.html

我爱信息图表。

作为一个信息设计师,在过去25年中我跟各种各样的数据打交道。今天跟大家分享一些我的见解。

首先让我们聊一聊历史。

图表的前世今生:从条形图到南丁格尔玫瑰图

沟通是对信息的编码、传输和解码。沟通的突破标志着人类文化的转折点。在沟通方面,语言、文字和算术能力得到了很大的发展。它们让我们可以把想法编码为文字,并量化成数字。没有沟通能力,人类的发展将会停滞在石器时代。

尽管人类已经存在25万年,但仅在8000年前,才出现原始文字。在将近3000年后,首个正式的书写系统才成形。地图已存在了几千年,图表出现了数百年之久。

但通过图形来表示数量,还是一个相对较新的发展领域。

直至1786年,威廉·普莱费尔发明的首个条形图,这才催生了对数量信息的视觉显示形式。

1786年 威廉·普莱费尔发明的首个条形图

15年后,他引入了首个饼图和面积图。他这些发明仍是今天最常使用的图表类型。

1801年 威廉·普莱费尔的饼图和面积图

1857年,弗洛伦斯·南丁格尔发明了鸡冠花图 (又名南丁格尔玫瑰图),用来来向维多利亚女王介绍军队的死亡率。在用蓝色强调的部分,她展示了军队的大多数死亡可以如何被避免。

1857年 弗洛伦斯·南丁格尔的鸡冠花图

不久之后,查尔斯·米纳德绘制了拿破仑进军莫斯科的图表。其中展示了一支42.2万人的军队是如何在战斗、地理和冰冻的影响下付出惨痛代价,最终减少到只有1万人的。这当中,他将桑基图与制图以及温度线图表结合在一起。

1861年 查尔斯·米纳德 绘制的拿破仑进军莫斯科图

用图表让数据会说话

当有很多数据可用是,我总是很激动,特别是当它产生出有趣的图表形式时。

看到这张整理数千份联邦能源补贴数据的图,南丁格尔玫瑰图是它的灵感来源。图中仔细显示出,相比化石能源,可再生能源投入不足。

联邦能源补贴数据图

这个桑基图展示了美国经济中的能源流动,强调了近一半的能源消耗是作为废热流失的。

美国经济中的能源流动

我喜欢把数据用美观的形式展现。

在这里,硅谷女性的个人和职业联系可以被绘制成弧线。

硅谷女性的个人和职业联系

同时,全球范围内发明家的协作也可被绘制出来。

全球范围内发明家的协作图

我甚至为自己制作了图表。

我擅长数字领域,但我的拼字游戏玩得差劲。我做了这个图表来记住官方拼字字典里的所有两个字母和三个字母的单词。熟知这1168个单词显然是我的制胜法则。

有些时候我编写代码 ,去把数千个数据点快速生成图片,编程也让我可以制作交互式图表。现在我们还可以根据自己的条件来导航信息。

图表能让数据一目了然

奇特的图表当然看起来很酷,但又是很小且简单的一个点就足以满足所需,从去解决特定的思考任务。

2006年,纽约时报重新设计他们的市场板块。将原本多达8页的股票列表削减到只有1页半的基本市场数据。其中列出了最常用的股票指标,但我想帮助投资者了解这些股票表现如何。

因此我增加了一个简单小点,用来展示现在价格在一年内的水平。这样只需看一眼,价值投资者就可以通过靠近左边的点去挑选出股价接近低位的股票;短线投资者可以通过靠近右边的点找出上升趋势的股票。

2006年 纽约时报重新设计的股票板块

不久之后,华尔街日报复制了这个设计,从而简单化通常是大部分图表的目标。

一张好的图胜过千言万语

但有时候我们需要复杂性,并充分展现出大量数据集。

盖洛普公司的前主席--亚力克·盖洛普,他有次给了我一本非常厚的书。数百页纸涵盖了60年的总统支持率数据。

我告诉他,整本书可以图表化在一页上。他说 "这不可能”。

这张就是,在一页中展示2万5千个数据点。

只需一眼就可以看出:多数总统以高支持率开场,但很少能够维持。像战争那样的事件最初会提升支持率,丑闻会引发下降。这些重要事件能在图表中被注释,在书中可不行。

数据可视化能力将越来越重要

要点在于,图表可以用惊人的效率传输数据。

图形能力,即读图和画图的能力仍然处于早期阶段。

新的图表将会出现,专业的用语将会发展。图表可以帮我们更快地思考,比如在一页纸上就看到整本书的信息,这就是开启新发现的关键。

我们的视觉皮层是用来解码复杂信息的,而且还非常擅长模式识别。如今,通过图形能力、数据可视化能力,我们能充分利用大脑内置GPU,从而轻松处理海量数据,去发现藏在里面的金子!

本文分享自微信公众号 - CDA数据分析师(cdacdacda),作者:CDA数据分析师

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2021-01-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 数据可视化经历了怎样的发展历程?

    信息爆炸时代,经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。

    数据森麟
  • 【研究院】中国最强的AI Lab,是腾讯AI Lab吗?

    腾讯AI Lab是腾讯企业级人工智能实验室,于2016年4月在深圳成立,目前其在中国和美国有70位世界级科学家及300余位经验丰富的应用工程师。

    用户1508658
  • “盘活”故宫、敦煌、秦陵…腾讯用了哪些法宝?

    ? ? 6月8日,是“文化和自然遗产日”,在这一天,在中国的古都西安,一个混血儿诞生了:代表着科技与新时代的腾讯地图及腾讯文旅,和代表着历史与文化传承的秦始皇...

    腾讯文旅
  • 李德毅详解:无人驾驶的核心在驾驶脑|中国机器人峰会

    GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,谷歌,DeepMind,Uber,微软等巨头的人...

    AI科技评论
  • 【干货】胡郁:科大讯飞的深度学习之路(PPT下载)

    【新智元导读】科大讯飞轮值总裁胡郁今天在“第三届网易未来科技峰会”发表演讲,介绍科大讯飞深度学习发展之路:从2010年开展DNN语音识别研究,2011年上线首个...

    新智元
  • 软件发展的新趋势——从人工智能到群智协同

    家住北京市朝阳区的程序员诸葛建国来到了新的项目组,这次的项目组鼓吹的概念很特别,唤做"知识工作自动化",你想想这东西可怕不可怕?过去都是白领才能做知识工作,现在...

    大神带我来搬砖
  • Elasticsearch 搜索工程师笔试面试,请先看这 10 条建议!

    电话等个人信息填错,项目经历中语句不通顺、错字、别字,标点符号、排版等乱七八糟的简历等都非常常见。

    铭毅天下
  • 以亚马逊Alexa为代表的语音助手不能成为入口载体的3大原因

    【新智元导读】 所谓“入口”,就是网络大数据汇聚的必经之地。入口历来是各大小公司的必争之地。亚马逊 Echo-Alexa 软硬合体,能够以人工智能的旗号,从智能...

    新智元
  • 黄骞:我们是如何在一张地图上表现86万个数据的

    作为一名数据工作者,我每天会接触到很多的数据可视化成果,美好的可视化作品简洁明快炫酷非常,让人心情舒畅。

    华章科技

扫码关注云+社区

领取腾讯云代金券