前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Microsoft NNI入门

Microsoft NNI入门

作者头像
BBuf
发布2021-03-09 15:31:39
1.5K0
发布2021-03-09 15:31:39
举报
文章被收录于专栏:GiantPandaCVGiantPandaCV

【GiantPandaCV导语】Neural Network Intelligence 是一个工具包,可以有效帮助用户设计并调优汲取学习模型的神经网络架构,以及超参数。具有易于使用、可扩展、灵活、高效的特点。本文主要讲NNI基础的概念以及一个训练MNIST的入门教程。本文首发于GiantPandaCV,未经允许,不得转载。

1. 概述

NNI有以下几个特性:

  • 易于使用:可以通过pip进行安装,通过命令行工具查看效果。
  • 可扩展:支持不同计算资源,多种计算平台,可以在不同平台并行运行。
  • 灵活:NNI内部有超参数调优算法、NAS算法、early stop算法等
  • 高效:NNI在系统和算法级别上进行不断优化。

基础概念:

  • Experiment:表示一次任务,比如寻找最好的神经网络架构。由automl算法+多个Trial构成。
  • Search Space: 搜索空间,需要预定义的空间,比如超参数范围,block个数限制等。
  • Configuration: 配置文件是搜索空间的实例化,比如从搜索空间中固定下来一定的超参数。
  • Trial:独立尝试,基于某个Configuration来进行运行的一次实验。
  • Tuner:调优器内含有automl算法,可以为下一个trial生成新的Configuration。
  • Assessor: 评估器,分析trial的中间结果,来确定trial是否应该提前终止掉。
  • 训练平台:Trial的具体执行环境,比如本机、远程服务器、集群等等。

体系结构如下图所示:

  • nnictl: 这是命令行工具,用于控制web 服务器,和其他管理功能,用户可以使用这个命令来进行管理。
  • NNI Core: 内部核心,实现了web UI, nnimanager控制器,训练服务等核心内容。
  • Advisor: 包括Tuner和Assessor,分别负责生成下一个trial和评估该trial。
  • 右侧代表训练平台,将许多trial进行分配到各个平台中,完成一次尝试。

体系结构

2. 使用逻辑

一个Experiment的运行逻辑是:

  • Tuner 接收搜索空间,生成configuration
  • 将这些生成的configuration提交到很多训练平台上。
  • 将各个平台上执行的训练结果返回给Tuner
  • 继续生成新的configuration。

用户的使用逻辑是:

  • 定义搜索空间,按照格式要求编写json文件
  • 改动原有模型代码,添加上nni的api
  • 定义实验配置,在config.yml文件中,根据要求,设置好对应的参数要求。

3. 功能

  • 超参数调优:最核心的功能,提供了许多流行的自动调优算法和提前终止算法。
  • 通用NAS框架:指定候选的架构,并且可以为NAS的研究人员提供了简单的接口,便于开发新的NAS算法。NNI支持多种one-shot NAS算法,使用这些算法不需要启动NNI experiment,只需直接运行。但是如果需要调整超参数,就需要启动NNI experiement。
  • 模型压缩:压缩后的网络通常具有更小的模型尺寸和更快的推理速度, 模型性能也不会有明显的下降。NNI 上的模型压缩包括剪枝和量化算法
  • 自动特征工程:为下游任务找到最有效的特征。

4. 安装

Linux下安装:

代码语言:javascript
复制
python3 -m pip install --upgrade nni

Docker中使用NNI:

代码语言:javascript
复制
docker pull msranni/nni:latest

Window下安装:

代码语言:javascript
复制
pip install cython wheel
python -m pip install --upgrade nni

5. 入门实验

用MNIST进行演示如何找到MNIST模型最佳超参数,官方教程以tensorflow1.x为例的,并且暂时还没有支持tensorflow2.x,笔者本地只有tf2和pytorch环境,所以选择pytorch进行演示。演示代码来自官方库:https://github.com/microsoft/nni/blob/master/examples/trials/mnist-pytorch

伪代码:

代码语言:javascript
复制
输出: 一组最优的参数配置

1: For t = 0, 1, 2, ..., maxTrialNum,
2:      hyperparameter = 从搜索空间选择一组参数
3:      final result = run_trial_and_evaluate(hyperparameter)
4:      返回最终结果给 NNI
5:      If 时间达到上限,
6:          停止实验
7: 返回最好的实验结果

网络结构定义:

代码语言:javascript
复制
class Net(nn.Module):
    def __init__(self, hidden_size):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, hidden_size)
        self.fc2 = nn.Linear(hidden_size, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

基本上和pytorch网络是一样的,不过构建类的时候有一个超参数,hidden size是nni负责搜索的。

第一步:搜索空间文件构建

代码语言:javascript
复制
{
    "batch_size": {"_type":"choice", "_value": [16, 32, 64, 128]},
    "hidden_size":{"_type":"choice","_value":[128, 256, 512, 1024]},
    "lr":{"_type":"choice","_value":[0.0001, 0.001, 0.01, 0.1]},
    "momentum":{"_type":"uniform","_value":[0, 1]}
}

可以看出,搜索对象有batch size、hidden size、lr、momentum等参数,里边涉及到几种类型 type。

choice代表从后边value中选择其中一个值,uniform代表生成一个均匀分布的超参数。

第二步:添加nni api从nni获取超参数,并返回运行结果

代码语言:javascript
复制
try:
    # get parameters form tuner
    tuner_params = nni.get_next_parameter()
    logger.debug(tuner_params)
    params = vars(merge_parameter(get_params(), tuner_params))
    print(params)
    main(params)
except Exception as exception:
    logger.exception(exception)
    raise

第三行,nni.get_next_parameter()就是tuner,获取下一个configuration,将参数传递给main(第七行)中,开始根据configuration执行一次trial。

在main函数中,通过args得到对应hidden_size、lr、momentum等的参数

代码语言:javascript
复制
def main(args):
    use_cuda = not args['no_cuda'] and torch.cuda.is_available()

    torch.manual_seed(args['seed'])

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

    data_dir = args['data_dir']

    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST(data_dir, train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args['batch_size'], shuffle=True, **kwargs)

    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=1000, shuffle=True, **kwargs)

    hidden_size = args['hidden_size']

    model = Net(hidden_size=hidden_size).to(device)
    
    optimizer = optim.SGD(model.parameters(), lr=args['lr'],
                          momentum=args['momentum'])

    for epoch in range(1, args['epochs'] + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test_acc = test(args, model, device, test_loader)

        # report intermediate result
        nni.report_intermediate_result(test_acc)
        logger.debug('test accuracy %g', test_acc)
        logger.debug('Pipe send intermediate result done.')

    # report final result
    nni.report_final_result(test_acc)
    logger.debug('Final result is %g', test_acc)
    logger.debug('Send final result done.')

返回运行结果:

代码语言:javascript
复制
for epoch in range(1, args['epochs'] + 1):
    train(args, model, device, train_loader, optimizer, epoch)
    test_acc = test(args, model, device, test_loader)

    # report intermediate result
    nni.report_intermediate_result(test_acc)
    logger.debug('test accuracy %g', test_acc)
    logger.debug('Pipe send intermediate result done.')

# report final result
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')

主要是nni.report_intermediate_result 返回中间结果 和 nni.report_final_result 返回最终结果。

第三步 定义配置文件,声明搜索空间和Trial

代码语言:javascript
复制
authorName: pprp
experimentName: example_mnist_pytorch
trialConcurrency: 1 # 设置并发数量
maxExecDuration: 1h # 每个trial 最长执行时间
maxTrialNum: 10 # 实验重复运行次数
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json # 搜索空间对应json文件
#choice: true, false
useAnnotation: false
tuner:
  #choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner
  #SMAC (SMAC should be installed through nnictl)
  builtinTunerName: TPE # 指定tuner算法
  classArgs:
    #choice: maximize, minimize
    optimize_mode: maximize
trial:
  command: python3 mnist.py # 命令行
  codeDir: .
  gpuNum: 1 # 使用gpu数目

一切准备就绪,在命令行启动MNIST Experiment:

代码语言:javascript
复制
nnictl create --config config.yml

运行命令,开始在后台执行

访问上图展示的连接,可以看到NNI Web UI界面。

官方提供的教程基于tensorflow 1.x,详细了解请看 https://nni.readthedocs.io/zh/stable/Tutorial/QuickStart.html

后续会陆陆续续出关于NAS使用教程,敬请期待。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-02-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 GiantPandaCV 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 概述
  • 2. 使用逻辑
  • 3. 功能
  • 4. 安装
  • 5. 入门实验
相关产品与服务
命令行工具
腾讯云命令行工具 TCCLI 是管理腾讯云资源的统一工具。使用腾讯云命令行工具,您可以快速调用腾讯云 API 来管理您的腾讯云资源。此外,您还可以基于腾讯云的命令行工具来做自动化和脚本处理,以更多样的方式进行组合和重用。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档