前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[源码解析] 并行分布式框架 Celery 之 worker 启动 (1)

[源码解析] 并行分布式框架 Celery 之 worker 启动 (1)

作者头像
罗西的思考
发布2021-04-01 10:39:19
1K0
发布2021-04-01 10:39:19
举报
文章被收录于专栏:罗西的思考

0x00 摘要

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。Celery 是调用其Worker 组件来完成具体任务处理。

代码语言:javascript
复制
$ celery --app=proj worker -l INFO
$ celery -A proj worker -l INFO -Q hipri,lopri
$ celery -A proj worker --concurrency=4
$ celery -A proj worker --concurrency=1000 -P eventlet
$ celery worker --autoscale=10,0

所以我们本文就来讲解 worker 的启动过程。

0x01 Celery的架构

前面我们用几篇文章分析了 Kombu,为 Celery 的分析打下了基础。

下面我们再回顾下 Celery 的结构。Celery的架构图如下所示:

代码语言:javascript
复制
 +-----------+            +--------------+
 | Producer  |            |  Celery Beat |
 +-------+---+            +----+---------+
         |                     |
         |                     |
         v                     v

       +-------------------------+
       |          Broker         |
       +------------+------------+
                    |
                    |
                    |
     +-------------------------------+
     |              |                |
     v              v                v
+----+-----+   +----+------+   +-----+----+
| Exchange |   |  Exchange |   | Exchange |
+----+-----+   +----+------+   +----+-----+
     |              |               |
     v              v               v

  +-----+       +-------+       +-------+
  |queue|       | queue |       | queue |
  +--+--+       +---+---+       +---+---+
     |              |               |
     |              |               |
     v              v               v

+---------+     +--------+     +----------+
| worker  |     | Worker |     |  Worker  |
+-----+---+     +---+----+     +----+-----+
      |             |               |
      |             |               |
      +-----------------------------+
                    |
                    |
                    v
                +---+-----+
                | backend |
                +---------+

0x02 示例代码

其实网上难以找到调试Celery worker的办法。我们可以去其源码看看,发现如下:

代码语言:javascript
复制
# def test_worker_main(self):
#     from celery.bin import worker as worker_bin
#
#     class worker(worker_bin.worker):
#
#         def execute_from_commandline(self, argv):
#             return argv
#
#     prev, worker_bin.worker = worker_bin.worker, worker
#     try:
#         ret = self.app.worker_main(argv=['--version'])
#         assert ret == ['--version']
#     finally:
#         worker_bin.worker = prev

所以我们可以模仿来进行,使用如下启动worker,进行调试。

代码语言:javascript
复制
from celery import Celery

app = Celery('tasks', broker='redis://localhost:6379')

@app.task()
def add(x, y):
    return x + y

if __name__ == '__main__':
    app.worker_main(argv=['worker'])

0x03 逻辑概述

当启动一个worker的时候,这个worker会与broker建立链接(tcp长链接),然后如果有数据传输,则会创建相应的channel, 这个连接可以有多个channel。然后,worker就会去borker的队列里面取相应的task来进行消费了,这也是典型的消费者生产者模式。

这个worker主要是有四部分组成的,task_pool, consumer, scheduler, mediator。其中,task_pool主要是用来存放的是一些worker,当启动了一个worker,并且提供并发参数的时候,会将一些worker放在这里面。

celery默认的并发方式是prefork,也就是多进程的方式,这里只是celery对multiprocessing pool进行了轻量的改造,然后给了一个新的名字叫做prefork,这个pool与多进程的进程池的区别就是这个task_pool只是存放一些运行的worker。

consumer也就是消费者,主要是从broker那里接受一些message,然后将message转化为celery.worker.request.Request 的一个实例。

Celery 在适当的时候,会把这个请求包装进Task中,Task就是用装饰器app_celery.task()装饰的函数所生成的类,所以可以在自定义的任务函数中使用这个请求参数,获取一些关键的信息。此时,已经了解了task_pool和consumer。

接下来,这个worker具有两套数据结构,这两套数据结构是并行运行的,他们分别是 'ET时刻表' 、就绪队列。

就绪队列:那些 立刻就需要运行的task, 这些task到达worker的时候会被放到这个就绪队列中等待consumer执行。

我们下面看看如何启动Celery

0x04 Celery应用

程序首先会来到Celery类,这是Celery的应用。

可以看到主要就是:各种类名称,TLS, 初始化之后的各种signal。

位置在:celery/app/base.py,其定义如下:

代码语言:javascript
复制
class Celery:
    """Celery application."""

    amqp_cls = 'celery.app.amqp:AMQP'
    backend_cls = None
    events_cls = 'celery.app.events:Events'
    loader_cls = None
    log_cls = 'celery.app.log:Logging'
    control_cls = 'celery.app.control:Control'
    task_cls = 'celery.app.task:Task'
    registry_cls = 'celery.app.registry:TaskRegistry'

    #: Thread local storage.
    _local = None
    _fixups = None
    _pool = None
    _conf = None
    _after_fork_registered = False

    #: Signal sent when app is loading configuration.
    on_configure = None

    #: Signal sent after app has prepared the configuration.
    on_after_configure = None

    #: Signal sent after app has been finalized.
    on_after_finalize = None

    #: Signal sent by every new process after fork.
    on_after_fork = None

对于我们的示例代码,入口是:

代码语言:javascript
复制
def worker_main(self, argv=None):
    if argv is None:
        argv = sys.argv

    if 'worker' not in argv:
        raise ValueError(
            "The worker sub-command must be specified in argv.\n"
            "Use app.start() to programmatically start other commands."
        )

    self.start(argv=argv)

4.1 添加子command

celery/bin/celery.py 会进行添加 子command,我们可以看出来。

这些 Commnd 是可以在命令行作为子命令直接使用的

代码语言:javascript
复制
celery.add_command(purge)
celery.add_command(call)
celery.add_command(beat)
celery.add_command(list_)
celery.add_command(result)
celery.add_command(migrate)
celery.add_command(status)
celery.add_command(worker)
celery.add_command(events)
celery.add_command(inspect)
celery.add_command(control)
celery.add_command(graph)
celery.add_command(upgrade)
celery.add_command(logtool)
celery.add_command(amqp)
celery.add_command(shell)
celery.add_command(multi)

每一个都是command。我们以worker为例,具体如下:

代码语言:javascript
复制
worker = {CeleryDaemonCommand} <CeleryDaemonCommand worker>
 add_help_option = {bool} True
 allow_extra_args = {bool} False
 allow_interspersed_args = {bool} True
 context_settings = {dict: 1} {'allow_extra_args': True}
 epilog = {NoneType} None
 name = {str} 'worker'
 options_metavar = {str} '[OPTIONS]'
 params = {list: 32} [<CeleryOption hostname>, ...... , <CeleryOption executable>]

4.2 入口点

然后会引入Celery 命令入口点 Celery。

代码语言:javascript
复制
def start(self, argv=None):
    from celery.bin.celery import celery

    celery.params[0].default = self

    try:
        celery.main(args=argv, standalone_mode=False)
    except Exit as e:
        return e.exit_code
    finally:
        celery.params[0].default = None

4.3 缓存属性cached_property

Celery 中,大量的成员变量是被cached_property修饰的

使用 cached_property修饰过的函数,就变成是对象的属性,该对象第一次引用该属性时,会调用函数,对象第二次引用该属性时就直接从词典中取了,即 Caches the return value of the get method on first call。

很多知名Python项目都自己实现过 cached_property,比如Werkzeug,Django。

因为太有用,所以 Python 3.8 给 functools 模块添加了 cached_property 类,这样就有了官方的实现。

Celery 的代码举例如下:

代码语言:javascript
复制
    @cached_property
    def Worker(self):
        """Worker application.
        """
        return self.subclass_with_self('celery.apps.worker:Worker')

    @cached_property
    def Task(self):
        """Base task class for this app."""
        return self.create_task_cls()

    @property
    def pool(self):
        """Broker connection pool: :class:`~@pool`.
        """
        if self._pool is None:
            self._ensure_after_fork()
            limit = self.conf.broker_pool_limit
            pools.set_limit(limit)
            self._pool = pools.connections[self.connection_for_write()]
        return self._pool

所以,最终,Celery的内容应该是这样的:

代码语言:javascript
复制
app = {Celery} <Celery tasks at 0x7fb8e1538400>
 AsyncResult = {type} <class 'celery.result.AsyncResult'>
 Beat = {type} <class 'celery.apps.beat.Beat'>
 GroupResult = {type} <class 'celery.result.GroupResult'>
 Pickler = {type} <class 'celery.app.utils.AppPickler'>
 ResultSet = {type} <class 'celery.result.ResultSet'>
 Task = {type} <class 'celery.app.task.Task'>
 WorkController = {type} <class 'celery.worker.worker.WorkController'>
 Worker = {type} <class 'celery.apps.worker.Worker'>
 amqp = {AMQP} <celery.app.amqp.AMQP object at 0x7fb8e2444860>
 annotations = {tuple: 0} ()
 autofinalize = {bool} True
 backend = {DisabledBackend} <celery.backends.base.DisabledBackend object at 0x7fb8e25fd668>
 builtin_fixups = {set: 1} {'celery.fixups.django:fixup'}
 clock = {LamportClock} 1
 conf = {Settings: 163} Settings({'broker_url': 'redis://localhost:6379', 'deprecated_settings': set(), 'cache_...
 configured = {bool} True
 control = {Control} <celery.app.control.Control object at 0x7fb8e2585f98>
 current_task = {NoneType} None
 current_worker_task = {NoneType} None
 events = {Events} <celery.app.events.Events object at 0x7fb8e25ecb70>
 loader = {AppLoader} <celery.loaders.app.AppLoader object at 0x7fb8e237a4a8>
 main = {str} 'tasks'
 on_after_configure = {Signal} <Signal: app.on_after_configure providing_args={'source'}>
 on_after_finalize = {Signal} <Signal: app.on_after_finalize providing_args=set()>
 on_after_fork = {Signal} <Signal: app.on_after_fork providing_args=set()>
 on_configure = {Signal} <Signal: app.on_configure providing_args=set()>
 pool = {ConnectionPool} <kombu.connection.ConnectionPool object at 0x7fb8e26e9e80>
 producer_pool = {ProducerPool} <kombu.pools.ProducerPool object at 0x7fb8e26f02b0>
 registry_cls = {type} <class 'celery.app.registry.TaskRegistry'>
 set_as_current = {bool} True
 steps = {defaultdict: 2} defaultdict(<class 'set'>, {'worker': set(), 'consumer': set()})
 tasks = {TaskRegistry: 10} {'celery.chain': <@task: celery.chain of tasks at 0x7fb8e1538400>, 'celery.starmap': <@task: celery.starmap of tasks at 0x7fb8e1538400>, 'celery.chord': <@task: celery.chord of tasks at 0x7fb8e1538400>, 'celery.backend_cleanup': <@task: celery.backend_clea
 user_options = {defaultdict: 0} defaultdict(<class 'set'>, {})

具体部分成员变量举例如下图:

代码语言:javascript
复制
+---------------------------------------+
|  Celery                               |
|                                       |
|                              Beat+-----------> celery.apps.beat.Beat
|                                       |
|                              Task+-----------> celery.app.task.Task
|                                       |
|                     WorkController+----------> celery.worker.worker.WorkController
|                                       |
|                            Worker+-----------> celery.apps.worker.Worker
|                                       |
|                              amqp +----------> celery.app.amqp.AMQP
|                                       |
|                           control +----------> celery.app.control.Control
|                                       |
|                            events  +---------> celery.app.events.Events
|                                       |
|                            loader +----------> celery.loaders.app.AppLoader
|                                       |
|                              pool +----------> kombu.connection.ConnectionPool
|                                       |
|                     producer_pool +----------> kombu.pools.ProducerPool
|                                       |
|                             tasks +----------> TaskRegistry
|                                       |
|                                       |
+---------------------------------------+

0x05 Celery 命令

Celery的命令总入口为celery方法,具体在:celery/bin/celery.py。

代码缩减版如下:

代码语言:javascript
复制
@click.pass_context
def celery(ctx, app, broker, result_backend, loader, config, workdir,
           no_color, quiet, version):
    """Celery command entrypoint."""

    if loader:
        # Default app takes loader from this env (Issue #1066).
        os.environ['CELERY_LOADER'] = loader
    if broker:
        os.environ['CELERY_BROKER_URL'] = broker
    if result_backend:
        os.environ['CELERY_RESULT_BACKEND'] = result_backend
    if config:
        os.environ['CELERY_CONFIG_MODULE'] = config
    ctx.obj = CLIContext(app=app, no_color=no_color, workdir=workdir,
                         quiet=quiet)

    # User options
    worker.params.extend(ctx.obj.app.user_options.get('worker', []))
    beat.params.extend(ctx.obj.app.user_options.get('beat', []))
    events.params.extend(ctx.obj.app.user_options.get('events', []))

    for command in celery.commands.values():
        command.params.extend(ctx.obj.app.user_options.get('preload', []))

在方法中,会遍历celery.commands,拓展param,具体如下。这些 commands 就是之前刚刚提到的子Command:

代码语言:javascript
复制
celery.commands = 
 'report' = {CeleryCommand} <CeleryCommand report>
 'purge' = {CeleryCommand} <CeleryCommand purge>
 'call' = {CeleryCommand} <CeleryCommand call>
 'beat' = {CeleryDaemonCommand} <CeleryDaemonCommand beat>
 'list' = {Group} <Group list>
 'result' = {CeleryCommand} <CeleryCommand result>
 'migrate' = {CeleryCommand} <CeleryCommand migrate>
 'status' = {CeleryCommand} <CeleryCommand status>
 'worker' = {CeleryDaemonCommand} <CeleryDaemonCommand worker>
 'events' = {CeleryDaemonCommand} <CeleryDaemonCommand events>
 'inspect' = {CeleryCommand} <CeleryCommand inspect>
 'control' = {CeleryCommand} <CeleryCommand control>
 'graph' = {Group} <Group graph>
 'upgrade' = {Group} <Group upgrade>
 'logtool' = {Group} <Group logtool>
 'amqp' = {Group} <Group amqp>
 'shell' = {CeleryCommand} <CeleryCommand shell>
 'multi' = {CeleryCommand} <CeleryCommand multi>

0x06 worker 子命令

Work子命令是 Command 总命令的一员,也是我们直接在命令行加入 worker 参数时候,调用到的子命令。

代码语言:javascript
复制
$ celery -A proj worker -l INFO -Q hipri,lopri

worker 子命令继承了click.BaseCommand,为。

定义在celery/bin/worker.py。

因此如下代码间接调用到 worker 命令:

代码语言:javascript
复制
celery.main(args=argv, standalone_mode=False)

定义如下:

代码语言:javascript
复制
def worker(ctx, hostname=None, pool_cls=None, app=None, uid=None, gid=None,
           loglevel=None, logfile=None, pidfile=None, statedb=None,
           **kwargs):
    """Start worker instance.

    Examples
    --------
    $ celery --app=proj worker -l INFO
    $ celery -A proj worker -l INFO -Q hipri,lopri
    $ celery -A proj worker --concurrency=4
    $ celery -A proj worker --concurrency=1000 -P eventlet
    $ celery worker --autoscale=10,0

    """
    app = ctx.obj.app
    maybe_drop_privileges(uid=uid, gid=gid)
    worker = app.Worker(
        hostname=hostname, pool_cls=pool_cls, loglevel=loglevel,
        logfile=logfile,  # node format handled by celery.app.log.setup
        pidfile=node_format(pidfile, hostname),
        statedb=node_format(statedb, hostname),
        no_color=ctx.obj.no_color,
        **kwargs)
    worker.start()
    return worker.exitcode

此时流程如下图,可以看到,从 Celery 应用就进入到了具体的 worker 命令:

代码语言:javascript
复制
      +----------+
      |   User   |
      +----+-----+
           |
           |  worker_main
           |
           v
 +---------+------------+
 |        Celery        |
 |                      |
 |  Celery application  |
 |  celery/app/base.py  |
 |                      |
 +---------+------------+
           |
           |  celery.main
           |
           v
 +---------+------------+
 |  @click.pass_context |
 |       celery         |
 |                      |
 |                      |
 |    CeleryCommand     |
 | celery/bin/celery.py |
 |                      |
 +---------+------------+
           |
           |
           |
           v
+----------+------------+
|   @click.pass_context |
|        worker         |
|                       |
|                       |
|     WorkerCommand     |
| celery/bin/worker.py  |
+-----------------------+

0x07 Worker application

此时在该函数中会实例化app的Worker,Worker application 就是 worker 的实例此时的app就是前面定义的Celery类的实例app

定义在:celery/app/base.py。

代码语言:javascript
复制
@cached_property
def Worker(self):
    """Worker application.

    See Also:
        :class:`~@Worker`.
    """
    return self.subclass_with_self('celery.apps.worker:Worker')

此时subclass_with_self利用了Python的type动态生成类实例的属性。

代码语言:javascript
复制
def subclass_with_self(self, Class, name=None, attribute='app',
                       reverse=None, keep_reduce=False, **kw):
    """Subclass an app-compatible class.
    """
    Class = symbol_by_name(Class)                               # 导入该类
    reverse = reverse if reverse else Class.__name__            # 判断是否传入值,如没有则使用类的名称

    def __reduce__(self):                                       # 定义的方法 该方法在pickle过程中会被调用
        return _unpickle_appattr, (reverse, self.__reduce_args__()) 

    attrs = dict(
        {attribute: self},                                      # 默认设置app的值为self
        __module__=Class.__module__,    
        __doc__=Class.__doc__,
        **kw)                                                   # 填充属性
    if not keep_reduce:                                         
        attrs['__reduce__'] = __reduce__                        # 如果默认则生成的类设置__reduce__方法

    return type(bytes_if_py2(name or Class.__name__), (Class,), attrs) # 利用type实诚类实例

此时就已经从 worker 命令 得到了一个celery.apps.worker:Worker的实例,然后调用该实例的start方法,此时首先分析一下Worker类的实例化的过程。

我们先回顾下:

我们的执行从 worker_main 这个程序入口,来到了 Celery 应用。然后进入了 Celery Command,然后又进入到了 Worker 子Command,具体如下图。

代码语言:javascript
复制
                                     +----------------------+
      +----------+                   |  @cached_property    |
      |   User   |                   |      Worker          |
      +----+-----+            +--->  |                      |
           |                  |      |                      |
           |  worker_main     |      |  Worker application  |
           |                  |      |  celery/app/base.py  |
           v                  |      +----------------------+
 +---------+------------+     |
 |        Celery        |     |
 |                      |     |
 |  Celery application  |     |
 |  celery/app/base.py  |     |
 |                      |     |
 +---------+------------+     |
           |                  |
           |  celery.main     |
           |                  |
           v                  |
 +---------+------------+     |
 |  @click.pass_context |     |
 |       celery         |     |
 |                      |     |
 |                      |     |
 |    CeleryCommand     |     |
 | celery/bin/celery.py |     |
 |                      |     |
 +---------+------------+     |
           |                  |
           |                  |
           |                  |
           v                  |
+----------+------------+     |
|   @click.pass_context |     |
|        worker         |     |
|                       |     |
|                       |     |
|     WorkerCommand     |     |
| celery/bin/worker.py  |     |
+-----------+-----------+     |
            |                 |
            +-----------------+

下面就会正式进入 worker,Celery 把 worker 的正式逻辑成为 work as a program。

我们在下文将接下来继续看后续 work as a program 的启动过程。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-03-29 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 0x00 摘要
  • 0x01 Celery的架构
  • 0x02 示例代码
  • 0x03 逻辑概述
  • 0x04 Celery应用
    • 4.1 添加子command
      • 4.2 入口点
        • 4.3 缓存属性cached_property
        • 0x05 Celery 命令
        • 0x06 worker 子命令
        • 0x07 Worker application
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档