前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PyTorch自定义CUDA算子教程与运行时间分析

PyTorch自定义CUDA算子教程与运行时间分析

作者头像
godweiyang
发布2021-04-08 11:14:13
2.4K0
发布2021-04-08 11:14:13
举报

最近因为工作需要,学习了一波CUDA。这里简单记录一下PyTorch自定义CUDA算子的方法,写了一个非常简单的example,再介绍一下正确的PyTorch中CUDA运行时间分析方法。

所有的代码都放在了github上,地址是:https://github.com/godweiyang/torch-cuda-example

完整流程

下面我们就来详细了解一下PyTorch是如何调用自定义的CUDA算子的。

首先我们可以看到有四个代码文件:

  • main.py,这是python入口,也就是你平时写模型的地方。
  • add2.cpp,这是torch和CUDA连接的地方,将CUDA程序封装成了python可以调用的库。
  • add2.h,CUDA函数声明。
  • add2.cu,CUDA函数实现。

然后逐个文件看一下是怎么调用的。

CUDA算子实现

首先最简单的当属add2.hadd2.cu,这就是普通的CUDA实现。

void launch_add2(float *c,
                 const float *a,
                 const float *b,
                 int n);
__global__ void add2_kernel(float* c,
                            const float* a,
                            const float* b,
                            int n) {
    for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
            i < n; i += gridDim.x * blockDim.x) {
        c[i] = a[i] + b[i];
    }
}

void launch_add2(float* c,
                 const float* a,
                 const float* b,
                 int n) {
    dim3 grid((n + 1023) / 1024);
    dim3 block(1024);
    add2_kernel<<<grid, block>>>(c, a, b, n);
}

这里实现的功能是两个长度为

n

的tensor相加,每个block有1024个线程,一共有

n/1024

个block。具体CUDA细节就不讲了,本文重点不在于这个。

add2_kernel是kernel函数,运行在GPU端的。而launch_add2是CPU端的执行函数,调用kernel。注意它是异步的,调用完之后控制权立刻返回给CPU,所以之后计算时间的时候要格外小心,很容易只统计到调用的时间。

Torch C++封装

这里涉及到的是add2.cpp,这个文件主要功能是提供一个PyTorch可以调用的接口。

#include <torch/extension.h>
#include "add2.h"

void torch_launch_add2(torch::Tensor &c,
                       const torch::Tensor &a,
                       const torch::Tensor &b,
                       int n) {
    launch_add2((float *)c.data_ptr(),
                (const float *)a.data_ptr(),
                (const float *)b.data_ptr(),
                n);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("torch_launch_add2",
          &torch_launch_add2,
          "add2 kernel warpper");
}

torch_launch_add2函数传入的是C++版本的torch tensor,然后转换成C++指针数组,调用CUDA函数launch_add2来执行核函数。

这里用pybind11来对torch_launch_add2函数进行封装,然后用cmake编译就可以产生python可以调用的.so库。但是我们这里不直接手动cmake编译,具体方法看下面的章节。

Python调用

最后就是python层面,也就是我们用户编写代码去调用上面生成的库了。

import time
import numpy as np
import torch
from torch.utils.cpp_extension import load

cuda_module = load(name="add2",
                   sources=["add2.cpp", "add2.cu"],
                   verbose=True)

# c = a + b (shape: [n])
n = 1024 * 1024
a = torch.rand(n, device="cuda:0")
b = torch.rand(n, device="cuda:0")
cuda_c = torch.rand(n, device="cuda:0")

ntest = 10

def show_time(func):
    times = list()
    res = list()
    # GPU warm up
    for _ in range(10):
        func()
    for _ in range(ntest):
        # sync the threads to get accurate cuda running time
        torch.cuda.synchronize(device="cuda:0")
        start_time = time.time()
        r = func()
        torch.cuda.synchronize(device="cuda:0")
        end_time = time.time()

        times.append((end_time-start_time)*1e6)
        res.append(r)
    return times, res

def run_cuda():
    cuda_module.torch_launch_add2(cuda_c, a, b, n)
    return cuda_c

def run_torch():
    # return None to avoid intermediate GPU memory application
    # for accurate time statistics
    a + b
    return None

print("Running cuda...")
cuda_time, _ = show_time(run_cuda)
print("Cuda time:  {:.3f}us".format(np.mean(cuda_time)))

print("Running torch...")
torch_time, _ = show_time(run_torch)
print("Torch time:  {:.3f}us".format(np.mean(torch_time)))

这里6-8行的torch.utils.cpp_extension.load函数就是用来自动编译上面的几个cpp和cu文件的。最主要的就是sources参数,指定了需要编译的文件列表。然后就可以通过cuda_module.torch_launch_add2,也就是我们封装好的接口来进行调用。

接下来的代码就随心所欲了,这里简单写了一个测量运行时间,对比和torch速度的代码,这部分留着下一章节讲解。

总结一下,主要分为三个模块:

  • 先编写CUDA算子和对应的调用函数。
  • 然后编写torch cpp函数建立PyTorch和CUDA之间的联系,用pybind11封装。
  • 最后用PyTorch的cpp扩展库进行编译和调用。

运行时间分析

我们知道,CUDA kernel函数是异步的,所以不能直接在CUDA函数两端加上time.time()测试时间,这样测出来的只是调用CUDA api的时间,不包括GPU端运行的时间。

所以我们要加上线程同步函数,等待kernel中所有线程全部执行完毕再执行CPU端后续指令。这里我们将同步指令加在了python端,用的是torch.cuda.synchronize函数。

具体来说就是形如下面代码:

torch.cuda.synchronize()
start_time = time.time()
func()
torch.cuda.synchronize()
end_time = time.time()

其中第一次同步是为了防止前面的代码中有未同步还在GPU端运行的指令,第二次同步就是为了等fun()所有线程执行完毕后再统计时间。

这里我们torch和cuda分别执行10次看看平均时间,此外执行前需要先执行10次做一下warm up,让GPU达到正常状态。

我们分别测试四种情况,分别是:

  • 两次同步
  • 第一次同步,第二次不同步
  • 第一次不同步,第二次同步
  • 两次不同步

这里我们采用英伟达的Nsight Systems来可视化运行的每个时刻指令执行的情况。

安装命令为:

sudo apt install nsight-systems

然后在运行python代码时,在命令前面加上nsys profile就行了:

nsys profile python3 main.py

然后就会生成report1.qdstrmreport1.sqlite两个文件,将report1.qdstrm转换为report1.qdrep文件:

QdstrmImporter -i report1.qdstrm

最后将生成的report1.qdrep文件用Nsight Systems软件打开,我这里是mac系统。

两次同步

这是正确的统计时间的方法,我们打开Nsight Systems,放大kernel运行那一段可以看到下图:

其中第1和第3个框分别是cuda和torch的GPU warm up过程,这部分没有进行线程同步(上面的黄色块)。

而第2和第4个框就分别是cuda和torch的加法执行过程了,我们可以放大来看看。

可以看出,每执行一次(一个框)都经过了三个步骤:先是调用api(左上角蓝色框),然后执行kernel(下方蓝色框),最后线程同步(右上角黄色框)。

所以最后算出来的时间就是这三个步骤的耗时,也就是下图选中的范围:

时间大概在29us左右,和我们实际代码测出来的也是比较接近的:

其实我们实际想要知道的耗时并不包括api调用和线程同步的时间,但是这部分时间在python端不好去掉,所以就加上了。

第一次同步,第二次不同步

放大每次执行的过程:

可以看出,虽然长的和上一种情况几乎一模一样,但是在api调用完之后,立刻就进行计时了,所以耗时只有8us左右,实际测出来情况也是这样的:

第一次不同步,第二次同步

我们先来看一下实际统计的时间:

很奇怪是不是,第一次运行耗时非常久,那我们可视化看看到底怎么回事:

可以看出,因为第一次开始计时前没有同步线程,所以在GPU warm up调用api完毕后,第一次cuda kernel调用就开始了。然后一直等到warm up执行完毕,才开始执行第一次cuda kernel,然后是线程同步,结束后才结束计时。这个过程非常长,差不多有130us左右。然后第二次开始执行就很正常了,因为kernel结束的同步相当于是下一次执行之前的同步。

两次不同步

先来看看执行情况:

可以看出因为没有任何同步,所有GPU warm up和cuda kernel的api调用全接在一起了,执行也是。所以计时只计算到了每个api调用的时间,差不多在7us左右。

上面四种情况,torch指令情形几乎一样,因此不再赘述。

小结

通过这篇文章,应该可以大致了解PyTorch实现自定义CUDA算子并调用的方法,也能知道怎么正确的测量CUDA程序的耗时。

当然还有一些内容留作今后讲解,比如如何实现PyTorch神经网络的自定义前向和反向传播CUDA算子、如何用TensorFlow调用CUDA算子等等。

- END -

我是godweiyang,华东师范大学计算机系本硕专业第一,字节跳动AI Lab NLP算法工程师,秋招斩获上海三家互联网大厂ssp offer,主要研究方向为机器翻译、句法分析、模型压缩与加速。最大特点就是脾气好、有耐心,有任何问题都可以随时咨询我,不管是技术上的还是生活上的。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-03-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 算法码上来 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 完整流程
    • CUDA算子实现
      • Torch C++封装
        • Python调用
        • 运行时间分析
          • 两次同步
            • 第一次同步,第二次不同步
              • 第一次不同步,第二次同步
                • 两次不同步
                • 小结
                相关产品与服务
                机器翻译
                机器翻译(Tencent Machine Translation,TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档