前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >通过Prometheus来做SLI/SLO监控展示

通过Prometheus来做SLI/SLO监控展示

作者头像
没有故事的陈师傅
发布2021-04-08 15:08:29
1.7K0
发布2021-04-08 15:08:29
举报
文章被收录于专栏:运维开发故事

什么是SLI/SLO

SLI,全名Service Level Indicator,是服务等级指标的简称,它是衡定系统稳定性的指标。

SLO,全名Sevice Level Objective,是服务等级目标的简称,也就是我们设定的稳定性目标,比如"4个9","5个9"等。

SRE通常通过这两个指标来衡量系统的稳定性,其主要思路就是通过SLI来判断SLO,也就是通过一系列的指标来衡量我们的目标是否达到了"几个9"。

如何选择SLI

在系统中,常见的指标有很多种,比如:

  • 系统层面:CPU使用率、内存使用率、磁盘使用率等
  • 应用服务器层面:端口存活状态、JVM的状态等
  • 应用运行层面:状态码、时延、QPS等
  • 中间件层面:QPS、TPS、时延等
  • 业务层面:成功率、增长速度等

这么多指标,应该如何选择呢?只要遵从两个原则就可以:

  • 选择能够标识一个主体是否稳定的指标,如果不是这个主体本身的指标,或者不能标识主体稳定性的,就要排除在外。
  • 优先选择与用户体验强相关或用户可以明显感知的指标。

通常情况下,可以直接使用谷歌的VALET指标方法。

  • V:Volume,容量,服务承诺的最大容量
  • A:Availability,可用性,服务是否正常
  • L:Latency,延迟,服务的响应时间
  • E:Error,错误率,请求错误率是多少
  • T:Ticket,人工介入,是否需要人工介入

这就是谷歌使用VALET方法给的样例。

上面仅仅是简单的介绍了一下SLI/SLO,更多的知识可以学习《SRE:Google运维解密》和赵成老师的极客时间课程《SRE实践手册》。下面来简单介绍如何使用Prometheus来进行SLI/SLO监控。

service-level-operator

Service level operator是为了Kubernetes中的应用SLI/SLO指标来衡量应用的服务指标,并可以通过Grafana来进行展示。

Operator主要是通过SLO来查看和创建新的指标。例如:

代码语言:javascript
复制
apiVersion: monitoring.spotahome.com/v1alpha1
kind: ServiceLevel
metadata:
  name: awesome-service
spec:
  serviceLevelObjectives:
    - name: "9999_http_request_lt_500"
      description: 99.99% of requests must be served with <500 status code.
      disable: false
      availabilityObjectivePercent: 99.99
      serviceLevelIndicator:
        prometheus:
          address: http://myprometheus:9090
          totalQuery: sum(increase(http_request_total{host="awesome_service_io"}[2m]))
          errorQuery: sum(increase(http_request_total{host="awesome_service_io", code=~"5.."}[2m]))
      output:
        prometheus:
          labels:
            team: a-team
            iteration: "3"
  • availabilityObjectivePercent:SLO
  • totalQuery:总请求数
  • errorQuery:错误请求数

Operator通过totalQuert和errorQuery就可以计算出SLO的指标了。

部署service-level-operator

“前提:在Kubernetes集群中部署好Prometheus,我这里是采用Prometheus-Operator方式进行部署的。 ”

(1)首先创建RBAC

代码语言:javascript
复制
apiVersion: v1
kind: ServiceAccount
metadata:
  name: service-level-operator
  namespace: monitoring
  labels:
    app: service-level-operator
    component: app

---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: service-level-operator
  labels:
    app: service-level-operator
    component: app
rules:
  # Register and check CRDs.
  - apiGroups:
      - apiextensions.k8s.io
    resources:
      - customresourcedefinitions
    verbs:
      - "*"

  # Operator logic.
  - apiGroups:
      - monitoring.spotahome.com
    resources:
      - servicelevels
      - servicelevels/status
    verbs:
      - "*"

---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: service-level-operator
subjects:
  - kind: ServiceAccount
    name: service-level-operator
    namespace: monitoring 
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: service-level-operator

(2)然后创建Deployment

代码语言:javascript
复制
apiVersion: apps/v1 
kind: Deployment
metadata:
  name: service-level-operator
  namespace: monitoring
  labels:
    app: service-level-operator
    component: app
spec:
  replicas: 1
  selector:
    matchLabels:
      app: service-level-operator
      component: app
  strategy:
    rollingUpdate:
      maxUnavailable: 0
  template:
    metadata:
      labels:
        app: service-level-operator
        component: app
    spec:
      serviceAccountName: service-level-operator
      containers:
        - name: app
          imagePullPolicy: Always
          image: quay.io/spotahome/service-level-operator:latest
          ports:
            - containerPort: 8080
              name: http
              protocol: TCP
          readinessProbe:
            httpGet:
              path: /healthz/ready
              port: http
          livenessProbe:
            httpGet:
              path: /healthz/live
              port: http
          resources:
            limits:
              cpu: 220m
              memory: 254Mi
            requests:
              cpu: 120m
              memory: 128Mi

(3)创建service

代码语言:javascript
复制
apiVersion: v1
kind: Service
metadata:
  name: service-level-operator
  namespace: monitoring
  labels:
    app: service-level-operator
    component: app
spec:
  ports:
    - port: 80
      protocol: TCP
      name: http
      targetPort: http
  selector:
    app: service-level-operator
    component: app

(4)创建prometheus serviceMonitor

代码语言:javascript
复制
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: service-level-operator
  namespace: monitoring
  labels:
    app: service-level-operator
    component: app
    prometheus: myprometheus
spec:
  selector:
    matchLabels:
      app: service-level-operator
      component: app
  namespaceSelector:
    matchNames:
      - monitoring 
  endpoints:
    - port: http
      interval: 10s

到这里,Service Level Operator部署完成了,可以在prometheus上查看到对应的Target,如下:

然后就需要创建对应的服务指标了,如下所示创建一个示例。

代码语言:javascript
复制
apiVersion: monitoring.spotahome.com/v1alpha1
kind: ServiceLevel
metadata:
  name: prometheus-grafana-service
  namespace: monitoring
spec:
  serviceLevelObjectives:
    - name: "9999_http_request_lt_500"
      description: 99.99% of requests must be served with <500 status code.
      disable: false
      availabilityObjectivePercent: 99.99
      serviceLevelIndicator:
        prometheus:
          address: http://prometheus-k8s.monitoring.svc:9090
          totalQuery: sum(increase(http_request_total{service="grafana"}[2m]))
          errorQuery: sum(increase(http_request_total{service="grafana", code=~"5.."}[2m]))
      output:
        prometheus:
          labels:
            team: prometheus-grafana 
            iteration: "3"

上面定义了grafana应用"4个9"的SLO。

然后可以在Prometheus上看到具体的指标,如下。

接下来在Grafana上导入ID为8793的Dashboard,即可生成如下图表。

上面是SLI,下面是错误总预算和已消耗的错误。

下面可以定义告警规则,当SLO下降时可以第一时间收到,比如:

代码语言:javascript
复制
groups:
  - name: slo.rules
    rules:
      - alert: SLOErrorRateTooFast1h
        expr: |
          (
            increase(service_level_sli_result_error_ratio_total[1h])
            /
            increase(service_level_sli_result_count_total[1h])
          ) > (1 - service_level_slo_objective_ratio) * 14.6
        labels:
          severity: critical
          team: a-team
        annotations:
          summary: The monthly SLO error budget consumed for 1h is greater than 2%
          description: The error rate for 1h in the {{$labels.service_level}}/{{$labels.slo}} SLO error budget is being consumed too fast, is greater than 2% monthly budget.
      - alert: SLOErrorRateTooFast6h
        expr: |
          (
            increase(service_level_sli_result_error_ratio_total[6h])
            /
            increase(service_level_sli_result_count_total[6h])
          ) > (1 - service_level_slo_objective_ratio) * 6
        labels:
          severity: critical
          team: a-team
        annotations:
          summary: The monthly SLO error budget consumed for 6h is greater than 5%
          description: The error rate for 6h in the {{$labels.service_level}}/{{$labels.slo}} SLO error budget is being consumed too fast, is greater than 5% monthly budget.

第一条规则表示在1h内消耗的错误率大于30天内的2%,应该告警。第二条规则是在6h内的错误率大于30天的5%,应该告警。

下面是谷歌的的基准。

SLO错误率

时间范围

30天消耗百分比

2%

1h

730 * 2 / 100 = 14.6

5%

6h

730 / 6 * 5 / 100 = 6

10%

3d

30 / 3 * 10 / 100 = 1

最后

说到系统稳定性,这里不得不提到系统可用性,SRE提高系统的稳定性,最终还是为了提升系统的可用时间,减少故障时间。那如何来衡量系统的可用性呢?

目前业界有两种衡量系统可用性的方式,一个是时间维度,一个是请求维度。时间维度就是从故障出发对系统的稳定性进行评估。请求维度是从成功请求占比的角度出发,对系统稳定性进行评估。

  • 时间维度:可用性 = 服务时间 / (服务时间 + 故障时间)
  • 请求维度:可用性 = 成功请求数 / 总请求数

在SRE实践中,通常会选择请求维度来衡量系统的稳定性,就如上面的例子。不过,如果仅仅通过一个维度来判断系统的稳定性也有点太武断,还应该结合更多的指标,比如延迟,错误率等,而且对核心应用,核心链路的SLI应该更细致。

参考

[1] 《SRE实践手册》- 赵成 [2] 《SRE:Google运维解密》 [3] https://github.com/spotahome/service-level-operator

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-04-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 运维开发故事 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 什么是SLI/SLO
  • 如何选择SLI
  • service-level-operator
  • 部署service-level-operator
  • 最后
  • 参考
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档