前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >快速傅里叶变换——理论

快速傅里叶变换——理论

作者头像
月见樽
发布2021-04-13 16:24:04
1.3K0
发布2021-04-13 16:24:04
举报

本文公式较多,欢迎大家勘误

1.周期离散信号的傅里叶变换

离散信号傅里叶变换的公式如下所示:

X(e^{jw}) = \sum\limits^{+\infty}_{n = -\infty}{x[n] \times e^{-jwn}}
X(e^{jw}) = \sum\limits^{+\infty}_{n = -\infty}{x[n] \times e^{-jwn}}

离散傅里叶变换的原理是将原本非周期的信号复制扩展为周期信号,在实际的数字电路处理中,处理的信号是有限长的,取长度为N,即N为信号

x[n]
x[n]

的周期,对于有限长周期信号,其离散傅里叶变换有如下性质:

X(e^{jw}) = \sum\limits_{k=-\infty}^{+\infty}{2\pi a_k\delta(w-\frac{2\pi k}{N})}
X(e^{jw}) = \sum\limits_{k=-\infty}^{+\infty}{2\pi a_k\delta(w-\frac{2\pi k}{N})}

其中

a_k
a_k

为周期信号的傅里叶级数,而

\delta(w-\frac{2\pi k}{N})
\delta(w-\frac{2\pi k}{N})

表示当且仅当

w = \frac{2\pi k}{N},k=0,1,2,...
w = \frac{2\pi k}{N},k=0,1,2,...

时有

X(e^{jw}) \neq 0
X(e^{jw}) \neq 0

,因此可以将傅里叶变换转为离散表达,如下所示:

F[k] = X(e^{j\frac{2\pi}{N}k}) = \sum\limits_{n=0}^{N-1}{x[n] \times e^{-j\frac{2\pi}{N}nk}}
F[k] = X(e^{j\frac{2\pi}{N}k}) = \sum\limits_{n=0}^{N-1}{x[n] \times e^{-j\frac{2\pi}{N}nk}}

考虑

e^{j\frac{2\pi}{N}k}
e^{j\frac{2\pi}{N}k}

以N为周期,因此仅需要计算k从0到N-1即可,取

W_N^{k,n} = e^{-j\frac{2\pi}{N}nk}
W_N^{k,n} = e^{-j\frac{2\pi}{N}nk}

此公式写成矩阵乘法模式如下所示:

F = \left[\begin{matrix} F[0] \\ F[1] \\ ... \\ F[N-1] \end{matrix}\right] = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N-1] \end{matrix}\right] = W \times X \\ W = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N-1} \end{matrix}\right],X = \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N-1] \end{matrix}\right]
F = \left[\begin{matrix} F[0] \\ F[1] \\ ... \\ F[N-1] \end{matrix}\right] = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N-1] \end{matrix}\right] = W \times X \\ W = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N-1} \end{matrix}\right],X = \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N-1] \end{matrix}\right]

W为一个

N \times N
N \times N

的方阵,该计算的复杂度为

O(N^2)
O(N^2)

2.快速傅里叶变换(分治法)

2.1.系数W性质

对于系数矩阵中的元素

W_N^{k,n}
W_N^{k,n}

,其公式如下所示:

W_N^{k,n} = e^{-j\frac{2\pi}{N}nk}
W_N^{k,n} = e^{-j\frac{2\pi}{N}nk}

考虑

W^{k,n+\frac{N}{2}}
W^{k,n+\frac{N}{2}}

,推导公式如下所示:

W^{k,n+\frac{N}{2}} = e^{-j\frac{2\pi}{N}k(n + \frac{N}{2})} = e^{-j\frac{2\pi}{N}nk} \times e^{-j\frac{2\pi}{N}k\frac{N}{2}} = e^{-j\frac{2\pi}{N}nk} \times e^{-j\pi k} = e^{-j\frac{2\pi}{N}nk} \times (-1)^k
W^{k,n+\frac{N}{2}} = e^{-j\frac{2\pi}{N}k(n + \frac{N}{2})} = e^{-j\frac{2\pi}{N}nk} \times e^{-j\frac{2\pi}{N}k\frac{N}{2}} = e^{-j\frac{2\pi}{N}nk} \times e^{-j\pi k} = e^{-j\frac{2\pi}{N}nk} \times (-1)^k

再考虑

k=2r
k=2r

n=2m
n=2m

的情况:

W_N^{2r,n} = e^{-j\frac{2\pi}{N}2nr} = e^{-j\frac{2\pi}{\frac{N}{2}}nr} = W_{\frac{N}{2}}^{r,n} \\ W_N^{k,2m} = e^{-j\frac{2\pi}{N}2mk} = e^{-j\frac{2\pi}{\frac{N}{2}}mk} = W_{\frac{N}{2}}^{k,m}
W_N^{2r,n} = e^{-j\frac{2\pi}{N}2nr} = e^{-j\frac{2\pi}{\frac{N}{2}}nr} = W_{\frac{N}{2}}^{r,n} \\ W_N^{k,2m} = e^{-j\frac{2\pi}{N}2mk} = e^{-j\frac{2\pi}{\frac{N}{2}}mk} = W_{\frac{N}{2}}^{k,m}

再考虑

k = 2r + 1
k = 2r + 1

n=2m+1
n=2m+1

的情况:

W_N^{2r+1,n} = e^{-j\frac{2\pi}{N}2nr} \times e^{-j\frac{2\pi}{N}n} = W_{\frac{N}{2}}^{r,n} \times e^{-j\frac{2\pi}{N}n} \\ W_N^{k,2m+1} = e^{-j\frac{2\pi}{N}2mk} \times e^{-j\frac{2\pi}{N}k} = W_{\frac{N}{2}}^{k,m} \times e^{-j\frac{2\pi}{N}k}
W_N^{2r+1,n} = e^{-j\frac{2\pi}{N}2nr} \times e^{-j\frac{2\pi}{N}n} = W_{\frac{N}{2}}^{r,n} \times e^{-j\frac{2\pi}{N}n} \\ W_N^{k,2m+1} = e^{-j\frac{2\pi}{N}2mk} \times e^{-j\frac{2\pi}{N}k} = W_{\frac{N}{2}}^{k,m} \times e^{-j\frac{2\pi}{N}k}

最后考虑

k = r + \frac{N}{2}
k = r + \frac{N}{2}

n=2m
n=2m

n = 2m+1
n = 2m+1

的情况:

W_{N}^{r+\frac{N}{2},2m} = e^{-j\frac{2\pi}{N}2m(r+\frac{N}{2})} = e^{-j\frac{2\pi}{\frac{N}{2}}mr} \times e^{-j\frac{2\pi}{N}\times\frac{N}{2} \times 2m} = W_{\frac{N}{2}}^{r,m} \times e^{-j2\pi n} = W_{\frac{N}{2}}^{r,m} \\ W_{N}^{r+\frac{N}{2},2m+1} = e^{-j\frac{2\pi}{N}(2m+1)(r+\frac{N}{2})} = (e^{-j\frac{2\pi}{\frac{N}{2}}mr} \times e^{-j\frac{2\pi}{N}\times\frac{N}{2} \times 2m}) \times e^{-j\frac{2\pi}{N}(r+\frac{N}{2})} = W_{\frac{N}{2}}^{r,m} \times e^{-j\frac{2\pi}{N}r} \times e^{-j\pi} = -e^{-j\frac{2\pi}{N}r} \times W_{\frac{N}{2}}^{r,m}
W_{N}^{r+\frac{N}{2},2m} = e^{-j\frac{2\pi}{N}2m(r+\frac{N}{2})} = e^{-j\frac{2\pi}{\frac{N}{2}}mr} \times e^{-j\frac{2\pi}{N}\times\frac{N}{2} \times 2m} = W_{\frac{N}{2}}^{r,m} \times e^{-j2\pi n} = W_{\frac{N}{2}}^{r,m} \\ W_{N}^{r+\frac{N}{2},2m+1} = e^{-j\frac{2\pi}{N}(2m+1)(r+\frac{N}{2})} = (e^{-j\frac{2\pi}{\frac{N}{2}}mr} \times e^{-j\frac{2\pi}{N}\times\frac{N}{2} \times 2m}) \times e^{-j\frac{2\pi}{N}(r+\frac{N}{2})} = W_{\frac{N}{2}}^{r,m} \times e^{-j\frac{2\pi}{N}r} \times e^{-j\pi} = -e^{-j\frac{2\pi}{N}r} \times W_{\frac{N}{2}}^{r,m}

根据上述推导,可以得出系数W具有以下四条性质,这三条性质会在后续推导中用到:

W^{k,n+\frac{N}{2}} = W_N^{k,n} \times (-1)^k
W^{k,n+\frac{N}{2}} = W_N^{k,n} \times (-1)^k
W_N^{2r,n} = W_{\frac{N}{2}}^{r,n}
W_N^{2r,n} = W_{\frac{N}{2}}^{r,n}

,同理有

W_N^{k,2m} = W_{\frac{N}{2}}^{k,m}
W_N^{k,2m} = W_{\frac{N}{2}}^{k,m}
W_N^{2r+1,n} = W_{\frac{N}{2}}^{r,n} \times e^{-j\frac{2\pi}{N}n}
W_N^{2r+1,n} = W_{\frac{N}{2}}^{r,n} \times e^{-j\frac{2\pi}{N}n}

,同理有

W_N^{k,2m+1}= W_{\frac{N}{2}}^{k,m} \times e^{-j\frac{2\pi}{N}k}
W_N^{k,2m+1}= W_{\frac{N}{2}}^{k,m} \times e^{-j\frac{2\pi}{N}k}
W_{N}^{k+\frac{N}{2},n} =-W_N^{k,n}
W_{N}^{k+\frac{N}{2},n} =-W_N^{k,n}

W_{N}^{r+\frac{N}{2},2m+1}=-e^{-j\frac{2\pi}{N}r} \times W_{\frac{N}{2}}^{r,m}
W_{N}^{r+\frac{N}{2},2m+1}=-e^{-j\frac{2\pi}{N}r} \times W_{\frac{N}{2}}^{r,m}

2.2.频域抽取基2快速傅里叶变换

基n快速傅里叶变换用于一个长度N为

n^m
n^m

的序列,例如基2快速傅里叶作用在

N=2^m
N=2^m

的序列上,基4快速傅里叶作用在

N=4^m
N=4^m

的序列上。现在考虑基2FFT的推导(硬件实现一般使用基4或基8FFT实现),首先写出有限长离散序列的傅里叶变换,记一个信号

x[n]
x[n]

的FFT变换为

FFT(x[n])
FFT(x[n])

F[k] = FFT(x[n]) = \sum\limits_{n=0}^{N-1}{x[n] \times W_{N}^{k,n}}
F[k] = FFT(x[n]) = \sum\limits_{n=0}^{N-1}{x[n] \times W_{N}^{k,n}}

快速傅里叶变换的核心思想为分而治之,即分治法,该思想的核心是将一个长度为N的问题,分级为两个长度为

\frac{N}{2}
\frac{N}{2}

的问题,应用在这里即是需要将一个序列长度为N的FFT变换问题分解为两个序列长度为

\frac{N}{2}
\frac{N}{2}

的FFT变换。首先进行如下变换:

F[k] = \sum\limits_{n=0}^{N-1}{x[n] \times W_N^{k,n}} = \sum\limits_{n=0}^{\frac{N}{2} - 1}{x[n] \times W_N^{k,n}} + \sum\limits_{n=0}^{\frac{N}{2} - 1}{x[n+\frac{N}{2}] \times W_N^{k,n+\frac{N}{2}}}
F[k] = \sum\limits_{n=0}^{N-1}{x[n] \times W_N^{k,n}} = \sum\limits_{n=0}^{\frac{N}{2} - 1}{x[n] \times W_N^{k,n}} + \sum\limits_{n=0}^{\frac{N}{2} - 1}{x[n+\frac{N}{2}] \times W_N^{k,n+\frac{N}{2}}}

矩阵的形式如下所示:

F = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N-1] \end{matrix}\right] \\ = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N/2-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N/2-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N/2-1] \end{matrix}\right] + \left[\begin{matrix} W_N^{0,N/2} & W_N^{0,N/2+1} & ... & W_N^{0,N-1} \\ W_N^{1,N/2} & W_N^{1,N/2+1} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,N/2} & W_N^{N-1,N/2+1} & ... & W_N^{N-1,N-1} \end{matrix}\right] \times \left[\begin{matrix} x[N/2] \\ x[N/2+1] \\ ... \\ x[N-1] \end{matrix}\right]
F = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N-1] \end{matrix}\right] \\ = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N/2-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N/2-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N/2-1] \end{matrix}\right] + \left[\begin{matrix} W_N^{0,N/2} & W_N^{0,N/2+1} & ... & W_N^{0,N-1} \\ W_N^{1,N/2} & W_N^{1,N/2+1} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,N/2} & W_N^{N-1,N/2+1} & ... & W_N^{N-1,N-1} \end{matrix}\right] \times \left[\begin{matrix} x[N/2] \\ x[N/2+1] \\ ... \\ x[N-1] \end{matrix}\right]

根据W的性质

W^{k+\frac{N}{2},n} = e^{-j\frac{2\pi}{N}nk} \times (-1)^k
W^{k+\frac{N}{2},n} = e^{-j\frac{2\pi}{N}nk} \times (-1)^k

,代入后有:

F[k] = \sum\limits_{n=0}^{\frac{N}{2} - 1}{x[n] \times W_N^{k,n}} +\sum\limits_{n=0}^{\frac{N}{2} - 1}{(-1)^n \times x[n+\frac{N}{2}] \times W_N^{k,n+\frac{N}{2}}} = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_N^{k,n}[x[n] + (-1)^kx[n+\frac{N}{2}]]}
F[k] = \sum\limits_{n=0}^{\frac{N}{2} - 1}{x[n] \times W_N^{k,n}} +\sum\limits_{n=0}^{\frac{N}{2} - 1}{(-1)^n \times x[n+\frac{N}{2}] \times W_N^{k,n+\frac{N}{2}}} = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_N^{k,n}[x[n] + (-1)^kx[n+\frac{N}{2}]]}

矩阵形式的表达如下所示,现在的矩阵为两个个高度为N,长度为N/2的矩阵。

F = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N/2-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N/2-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N/2-1] \end{matrix}\right] + \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N/2-1} \\ -W_N^{1,0} & -W_N^{1,1} & ... & -W_N^{1,N/2-1} \\ ... & ... & ... & ... \\ -W_N^{N-1,0} & -W_N^{N-1,1} & ... & -W_N^{N-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[N/2] \\ x[N/2+1] \\ ... \\ x[N-1] \end{matrix}\right]
F = \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N/2-1} \\ W_N^{1,0} & W_N^{1,1} & ... & W_N^{1,N/2-1} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,1} & ... & W_N^{N-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ ... \\ x[N/2-1] \end{matrix}\right] + \left[\begin{matrix} W_N^{0,0} & W_N^{0,1} & ... & W_N^{0,N/2-1} \\ -W_N^{1,0} & -W_N^{1,1} & ... & -W_N^{1,N/2-1} \\ ... & ... & ... & ... \\ -W_N^{N-1,0} & -W_N^{N-1,1} & ... & -W_N^{N-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[N/2] \\ x[N/2+1] \\ ... \\ x[N-1] \end{matrix}\right]

代入

k=2r
k=2r

,根据W的性质

W_N^{2r,n} = W_{\frac{N}{2}}^{r,n}
W_N^{2r,n} = W_{\frac{N}{2}}^{r,n}

有:

F[2r] = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_N^{2r,n}[x[n] + x[n+\frac{N}{2}]]} = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_{\frac{N}{2}}^{r,n}[x[n] + x[n+\frac{N}{2}]]} = FFT(x[n] + x[n+\frac{N}{2}])
F[2r] = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_N^{2r,n}[x[n] + x[n+\frac{N}{2}]]} = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_{\frac{N}{2}}^{r,n}[x[n] + x[n+\frac{N}{2}]]} = FFT(x[n] + x[n+\frac{N}{2}])

矩阵表达如下所示:

F_0 = \left[\begin{matrix} F[0] \\ F[2] \\ ... \\ F[N-2] \end{matrix}\right] = \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,1} & ... & W_{N}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,1} & ... & W_{N}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,1} & ... & W_{N}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0]+x[N/2] \\ x[1]+x[N/2+1] \\ ... \\ x[N/2-1] + x[N-1] \end{matrix}\right]
F_0 = \left[\begin{matrix} F[0] \\ F[2] \\ ... \\ F[N-2] \end{matrix}\right] = \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,1} & ... & W_{N}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,1} & ... & W_{N}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,1} & ... & W_{N}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0]+x[N/2] \\ x[1]+x[N/2+1] \\ ... \\ x[N/2-1] + x[N-1] \end{matrix}\right]

代入

k=2r+1
k=2r+1

,根据W的性质

W_N^{2r+1,n} = W_{\frac{N}{2}}^{r,n} \times e^{-j\frac{2\pi}{N}n}
W_N^{2r+1,n} = W_{\frac{N}{2}}^{r,n} \times e^{-j\frac{2\pi}{N}n}

有:

F[2r+1] = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_N^{2r+1,n}[x[n] -x[n+\frac{N}{2}]]} = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_{\frac{N}{2}}^{r,n} \times e^{-j\frac{2\pi}{N}n}[x[n] - x[n+\frac{N}{2}]]} = FFT(e^{-j\frac{2\pi}{N}n}[x[n] - x[n+\frac{N}{2}]])
F[2r+1] = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_N^{2r+1,n}[x[n] -x[n+\frac{N}{2}]]} = \sum\limits_{n=0}^{\frac{N}{2} - 1}{W_{\frac{N}{2}}^{r,n} \times e^{-j\frac{2\pi}{N}n}[x[n] - x[n+\frac{N}{2}]]} = FFT(e^{-j\frac{2\pi}{N}n}[x[n] - x[n+\frac{N}{2}]])

矩阵表达如下所示:

F_1 = \left[\begin{matrix} F[1] \\ F[3] \\ ... \\ F[N-1] \end{matrix}\right] = \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,1} & ... & W_{N}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,1} & ... & W_{N}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,1} & ... & W_{N}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0]-x[N/2] \\ e^{-j\frac{2\pi}{N}} \times (x[1]-x[N/2+1]) \\ ... \\ e^{-j\frac{2\pi}{N}(N/2-1)} \times (x[N/2-1] - x[N-1]) \end{matrix}\right]
F_1 = \left[\begin{matrix} F[1] \\ F[3] \\ ... \\ F[N-1] \end{matrix}\right] = \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,1} & ... & W_{N}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,1} & ... & W_{N}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,1} & ... & W_{N}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0]-x[N/2] \\ e^{-j\frac{2\pi}{N}} \times (x[1]-x[N/2+1]) \\ ... \\ e^{-j\frac{2\pi}{N}(N/2-1)} \times (x[N/2-1] - x[N-1]) \end{matrix}\right]

根据上述推导,一个长度为N点的离散傅里叶变换被变为一个长度为

\frac{N}{2}
\frac{N}{2}

的离散傅里叶变换,取

W_N^n = e^{-j\frac{2\pi}{N}n}
W_N^n = e^{-j\frac{2\pi}{N}n}

公式如下所示:

FFT(x)[k] = \begin{cases} FFT(x_0)[k/2] & k\%2==0 \\ FFT(x_1)[(k-1)/2] & k\%2==1 \end{cases} \\ x_0[n] = x[n] + x[n+\frac{N}{2}],x_1[n] = W_N^n[x[n] - x[n+\frac{N}{2}]],W_N^n = e^{-j\frac{2\pi}{N}n}
FFT(x)[k] = \begin{cases} FFT(x_0)[k/2] & k\%2==0 \\ FFT(x_1)[(k-1)/2] & k\%2==1 \end{cases} \\ x_0[n] = x[n] + x[n+\frac{N}{2}],x_1[n] = W_N^n[x[n] - x[n+\frac{N}{2}]],W_N^n = e^{-j\frac{2\pi}{N}n}

2.3.时域抽取基2快速傅里叶变换

根据频域抽取基2FFT的算法,除了按前后分类外,还可以直接按奇偶进行分类,公式如下所示:

F[k] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x[2n] \times W_N^{k,2n}} + \sum\limits_{n=0}^{\frac{N}{2}-1}{x[2n+1] \times W_N^{k,2n+1}}
F[k] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x[2n] \times W_N^{k,2n}} + \sum\limits_{n=0}^{\frac{N}{2}-1}{x[2n+1] \times W_N^{k,2n+1}}

对应的矩阵表示为:

F = \left[\begin{matrix} W_N^{0,0} & W_N^{0,2} & ... & W_N^{0,N-2} \\ W_N^{1,0} & W_N^{1,2} & ... & W_N^{1,N-2} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,2} & ... & W_N^{N-1,N-2} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[2] \\ ... \\ x[N-2] \end{matrix}\right] + \left[\begin{matrix} W_N^{0,1} & W_N^{0,3} & ... & W_N^{0,N-1} \\ W_N^{1,1} & W_N^{1,3} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,1} & W_N^{N-1,3} & ... & W_N^{N-1,N-1} \end{matrix}\right] \times \left[\begin{matrix} x[1] \\ x[3] \\ ... \\ x[N-1] \end{matrix}\right]
F = \left[\begin{matrix} W_N^{0,0} & W_N^{0,2} & ... & W_N^{0,N-2} \\ W_N^{1,0} & W_N^{1,2} & ... & W_N^{1,N-2} \\ ... & ... & ... & ... \\ W_N^{N-1,0} & W_N^{N-1,2} & ... & W_N^{N-1,N-2} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[2] \\ ... \\ x[N-2] \end{matrix}\right] + \left[\begin{matrix} W_N^{0,1} & W_N^{0,3} & ... & W_N^{0,N-1} \\ W_N^{1,1} & W_N^{1,3} & ... & W_N^{1,N-1} \\ ... & ... & ... & ... \\ W_N^{N-1,1} & W_N^{N-1,3} & ... & W_N^{N-1,N-1} \end{matrix}\right] \times \left[\begin{matrix} x[1] \\ x[3] \\ ... \\ x[N-1] \end{matrix}\right]

取序列

x_0[n] = x[2n]
x_0[n] = x[2n]

x_1[n]=x[2n+1]
x_1[n]=x[2n+1]

代入上述表达式,取

k < \frac{N}{2}
k < \frac{N}{2}

再代入W的变换性质可得:

F[k] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_N^{k,2n}} + \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_N^{k,2n+1}} \\ = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_{\frac{N}{2}}^{k,n}} + e^{-j\frac{2\pi}{N}k} \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_{\frac{N}{2}}^{k,n}},k=0,1,...,\frac{N}{2} - 1
F[k] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_N^{k,2n}} + \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_N^{k,2n+1}} \\ = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_{\frac{N}{2}}^{k,n}} + e^{-j\frac{2\pi}{N}k} \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_{\frac{N}{2}}^{k,n}},k=0,1,...,\frac{N}{2} - 1

其对应的矩阵为:

F_0 = \left[\begin{matrix} F[0] \\ F[1] \\ ... \\ F[N/2-1] \end{matrix}\right] = \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,2} & ... & W_{N/2}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,2} & ... & W_{N/2}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,2} & ... & W_{N/2}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[2] \\ ... \\ x[N-2] \end{matrix}\right] \\ + e^{-j\frac{2\pi}{N}k} \times \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,2} & ... & W_{N/2}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,2} & ... & W_{N/2}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,2} & ... & W_{N/2}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[1] \\ x[3] \\ ... \\ x[N-1] \end{matrix}\right]
F_0 = \left[\begin{matrix} F[0] \\ F[1] \\ ... \\ F[N/2-1] \end{matrix}\right] = \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,2} & ... & W_{N/2}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,2} & ... & W_{N/2}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,2} & ... & W_{N/2}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[2] \\ ... \\ x[N-2] \end{matrix}\right] \\ + e^{-j\frac{2\pi}{N}k} \times \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,2} & ... & W_{N/2}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,2} & ... & W_{N/2}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,2} & ... & W_{N/2}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[1] \\ x[3] \\ ... \\ x[N-1] \end{matrix}\right]

即将对F[k]的上半部分结果分解为两个FFT结果的和,即:

F_0[k] = FFT(x_0)[k] + e^{-j\frac{2\pi}{N}k}\times FFT(x_1)[k],k=0,1,...,\frac{N}{2}-1
F_0[k] = FFT(x_0)[k] + e^{-j\frac{2\pi}{N}k}\times FFT(x_1)[k],k=0,1,...,\frac{N}{2}-1

现在考虑F[k]的下半部分,公式如下所示:

F[k] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_N^{k,2n}} + \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_N^{k,2n+1}},k=\frac{N}{2},\frac{N}{2}+1,...,N-1
F[k] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_N^{k,2n}} + \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_N^{k,2n+1}},k=\frac{N}{2},\frac{N}{2}+1,...,N-1

k=i+\frac{N}{2}
k=i+\frac{N}{2}

,代入有:

F[i+\frac{N}{2}] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_N^{i+N/2,2n}} + \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_N^{i+N/2,2n+1}},i=0,1,...,\frac{N}{2}-1
F[i+\frac{N}{2}] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_N^{i+N/2,2n}} + \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_N^{i+N/2,2n+1}},i=0,1,...,\frac{N}{2}-1

代入W的性质

W_{N}^{k+\frac{N}{2},n} =-W_N^{k,n}
W_{N}^{k+\frac{N}{2},n} =-W_N^{k,n}

W_{N}^{r+\frac{N}{2},2m+1}=-e^{-j\frac{2\pi}{N}r} \times W_{\frac{N}{2}}^{r,m}
W_{N}^{r+\frac{N}{2},2m+1}=-e^{-j\frac{2\pi}{N}r} \times W_{\frac{N}{2}}^{r,m}

,有:

F[i+\frac{N}{2}] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_{\frac{N}{2}}^{i,n}} - e^{-j\frac{2\pi}{N}i} \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_{\frac{N}{2}}^{i,n}},i=0,1,...,\frac{N}{2}-1
F[i+\frac{N}{2}] = \sum\limits_{n=0}^{\frac{N}{2}-1}{x_0[n] \times W_{\frac{N}{2}}^{i,n}} - e^{-j\frac{2\pi}{N}i} \sum\limits_{n=0}^{\frac{N}{2}-1}{x_1[n] \times W_{\frac{N}{2}}^{i,n}},i=0,1,...,\frac{N}{2}-1

将变量i更换为k,其矩阵形式为:

F_1 = \left[\begin{matrix} F[N/2] \\ F[N/2+1] \\ ... \\ F[N-1] \end{matrix}\right] = \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,2} & ... & W_{N/2}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,2} & ... & W_{N/2}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,2} & ... & W_{N/2}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[2] \\ ... \\ x[N-2] \end{matrix}\right] \\ - e^{-j\frac{2\pi}{N}k} \times \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,2} & ... & W_{N/2}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,2} & ... & W_{N/2}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,2} & ... & W_{N/2}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[1] \\ x[3] \\ ... \\ x[N-1] \end{matrix}\right]
F_1 = \left[\begin{matrix} F[N/2] \\ F[N/2+1] \\ ... \\ F[N-1] \end{matrix}\right] = \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,2} & ... & W_{N/2}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,2} & ... & W_{N/2}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,2} & ... & W_{N/2}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[2] \\ ... \\ x[N-2] \end{matrix}\right] \\ - e^{-j\frac{2\pi}{N}k} \times \left[\begin{matrix} W_{N/2}^{0,0} & W_{N/2}^{0,2} & ... & W_{N/2}^{0,N/2-1} \\ W_{N/2}^{1,0} & W_{N/2}^{1,2} & ... & W_{N/2}^{1,N/2-1} \\ ... & ... & ... & ... \\ W_{N/2}^{N/2-1,0} & W_{N/2}^{N/2-1,2} & ... & W_{N/2}^{N/2-1,N/2-1} \end{matrix}\right] \times \left[\begin{matrix} x[1] \\ x[3] \\ ... \\ x[N-1] \end{matrix}\right]

最终可以将结果汇总为:

FFT(x)[k] = \begin{cases} FFT(x_0)[k] + W_N^k\times FFT(x_1)[k]& k<\frac{N}{2} \\ FFT(x_0)[k] - W_N^k\times FFT(x_1)[k]& k\geq\frac{N}{2}\end{cases} \\ x_0[n] = \{x[n] | n\%2=0\},x_1[n] = \{x[n] | n \%2=1\},W_N^k = e^{-j\frac{2\pi}{N}k}
FFT(x)[k] = \begin{cases} FFT(x_0)[k] + W_N^k\times FFT(x_1)[k]& k<\frac{N}{2} \\ FFT(x_0)[k] - W_N^k\times FFT(x_1)[k]& k\geq\frac{N}{2}\end{cases} \\ x_0[n] = \{x[n] | n\%2=0\},x_1[n] = \{x[n] | n \%2=1\},W_N^k = e^{-j\frac{2\pi}{N}k}

3.快速傅里叶变换的实现

3.1.蝶形运算

蝶形运算的公式如下,蝶形运算输入为

X_0
X_0

X_1
X_1

,输出为

Y_0
Y_0

Y_1
Y_1

,系数为

W
W

\begin{cases}Y_0 = X_0 + W \times X_1 \\ Y_1 = X_0 - W \times X_1 \end{cases}
\begin{cases}Y_0 = X_0 + W \times X_1 \\ Y_1 = X_0 - W \times X_1 \end{cases}

其转换为矩阵表达为:

\left[\begin{matrix}Y_0 \\ Y_1 \end{matrix}\right] = \left[\begin{matrix} 1 & W \\ 1 & -W \end{matrix}\right] \times \left[\begin{matrix}X_0 \\ X_1\end{matrix}\right]
\left[\begin{matrix}Y_0 \\ Y_1 \end{matrix}\right] = \left[\begin{matrix} 1 & W \\ 1 & -W \end{matrix}\right] \times \left[\begin{matrix}X_0 \\ X_1\end{matrix}\right]

蝶形公式对应着2点FFT的计算,2点FFT的计算如下所示:

X[0] = x[0] \times W_2^{0,0} + x[1] \times W_2^{0,1},W_2^{0,0} = e^{-j\frac{2\pi}{2}\times 0} = 1,W_2^{0,1} = e^{-j\frac{2\pi}{2}\times 0} = 1 \\ X[1] = x[0] \times W_2^{1,0} + x[1] \times W_2^{1,1},W_2^{1,0} = e^{-j\frac{2\pi}{2} \times 0} = 1 ,W_2^{1,1} = e^{-j\frac{2\pi}{2}} = -1
X[0] = x[0] \times W_2^{0,0} + x[1] \times W_2^{0,1},W_2^{0,0} = e^{-j\frac{2\pi}{2}\times 0} = 1,W_2^{0,1} = e^{-j\frac{2\pi}{2}\times 0} = 1 \\ X[1] = x[0] \times W_2^{1,0} + x[1] \times W_2^{1,1},W_2^{1,0} = e^{-j\frac{2\pi}{2} \times 0} = 1 ,W_2^{1,1} = e^{-j\frac{2\pi}{2}} = -1

转换为矩阵表达为:

\left[\begin{matrix}X[0] \\ X[1] \end{matrix}\right] = \left[\begin{matrix} 1 & 1 \\ 1 & -1 \end{matrix}\right] \times \left[\begin{matrix}x[0] \\ x[1]\end{matrix}\right]
\left[\begin{matrix}X[0] \\ X[1] \end{matrix}\right] = \left[\begin{matrix} 1 & 1 \\ 1 & -1 \end{matrix}\right] \times \left[\begin{matrix}x[0] \\ x[1]\end{matrix}\right]

对应到蝶形运算有:

Y_0 = X[0],Y_1 = X[1],X_0 = x[0],X_1 = x[1],W=1
Y_0 = X[0],Y_1 = X[1],X_0 = x[0],X_1 = x[1],W=1

3.2.频域抽取基2FFT的实现

首先列出基2频域抽取FFT的分治公式:

FFT(x)[k] = \begin{cases} FFT(x_0)[k/2] & k\%2==0 \\ FFT(x_1)[(k-1)/2] & k\%2==1 \end{cases} \\ x_0[n] = x[n] + x[n+\frac{N}{2}],x_1[n] = W_N^n[x[n] - x[n+\frac{N}{2}]],W_N^n = e^{-j\frac{2\pi}{N}n}
FFT(x)[k] = \begin{cases} FFT(x_0)[k/2] & k\%2==0 \\ FFT(x_1)[(k-1)/2] & k\%2==1 \end{cases} \\ x_0[n] = x[n] + x[n+\frac{N}{2}],x_1[n] = W_N^n[x[n] - x[n+\frac{N}{2}]],W_N^n = e^{-j\frac{2\pi}{N}n}

以一个8点FFT为例,输入序列为:

x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7]
x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7]

进行第一次分治,分为两个4点FFT,序列为:

X_{0,0} = \{x[0]+x[4],x[1]+x[5],x[2]+x[6],x[3]+x[7] \} \\ X_{0,1} = \{W_8^0(x[0]-x[4]),W_8^1(x[1]-x[5]),W_8^2(x[2]-x[6]),W_8^3(x[3]-x[7])\}
X_{0,0} = \{x[0]+x[4],x[1]+x[5],x[2]+x[6],x[3]+x[7] \} \\ X_{0,1} = \{W_8^0(x[0]-x[4]),W_8^1(x[1]-x[5]),W_8^2(x[2]-x[6]),W_8^3(x[3]-x[7])\}

示意图如下所示,偶数标号的结果由第一个FFT生成,奇数标号的结果由第二个FFT生成:

tu1.png

随后进行第二次分治,将每个4点FFT分解为两个2点FFT,每个序列为:

X_{1,0} = \{X_{0,0}[0]+X_{0,0}[2],X_{0,0}[1]+X_{0,0}[3]\} \\ X_{1,1} = \{W_4^0(X_{0,0}[0]-X_{0,0}[2]),W_4^1(X_{0,0}[1] - X_{0,0}[3])\} \\ X_{1,2} = \{X_{0,1}[0]+X_{0,1}[2],X_{0,1}[1]+X_{0,1}[3]\} \\ X_{1,3} = \{W_4^0(X_{0,1}[0]-X_{0,1}[2]),W_4^1(X_{0,1}[1] - X_{0,1}[3])\} \\
X_{1,0} = \{X_{0,0}[0]+X_{0,0}[2],X_{0,0}[1]+X_{0,0}[3]\} \\ X_{1,1} = \{W_4^0(X_{0,0}[0]-X_{0,0}[2]),W_4^1(X_{0,0}[1] - X_{0,0}[3])\} \\ X_{1,2} = \{X_{0,1}[0]+X_{0,1}[2],X_{0,1}[1]+X_{0,1}[3]\} \\ X_{1,3} = \{W_4^0(X_{0,1}[0]-X_{0,1}[2]),W_4^1(X_{0,1}[1] - X_{0,1}[3])\} \\

示意图如下所示:

tu2.png

最终通过2点FFT计算出结果,但如上图所示,计算出的结果位置与标号并不对应,例如计算输出的标号为2的数据(Y10[1])应当位于输出序列(X)的标号4(X[4])。其变换规律为计算输出的标号为n的数据(第n+1个数据)对应到输出序列标号为m的数据,n为m的二进制反序。以计算输出标号为6(第七个数据)的数据Y13[0]为例,6的二进制为110,反序为011,对应十进制数为3,即有

X[3] = Y13[0]
X[3] = Y13[0]

3.3.时域抽取基2FFT的实现

首先列出时域抽取FFT的分治公式:

FFT(x)[k] = \begin{cases} FFT(x_0)[k] + W_N^k\times FFT(x_1)[k]& k<\frac{N}{2} \\ FFT(x_0)[k] - W_N^k\times FFT(x_1)[k]& k\geq\frac{N}{2}\end{cases} \\ x_0[n] = \{x[n] | n\%2=0\},x_1[n] = \{x[n] | n \%2=1\},W_N^k = e^{-j\frac{2\pi}{N}k}
FFT(x)[k] = \begin{cases} FFT(x_0)[k] + W_N^k\times FFT(x_1)[k]& k<\frac{N}{2} \\ FFT(x_0)[k] - W_N^k\times FFT(x_1)[k]& k\geq\frac{N}{2}\end{cases} \\ x_0[n] = \{x[n] | n\%2=0\},x_1[n] = \{x[n] | n \%2=1\},W_N^k = e^{-j\frac{2\pi}{N}k}

和频域抽取不同,时域抽取为先进行FFT,再进行结果的累加。同样以8点FFT为例,要想获取8点FFT的结果,首先将其分为两个4点FFT,分别处理标号为奇数和标号为偶数的序列,示意图如下所示:

tu3.png

随后进行第二次分治,将每个4点的FFT再分解成2点FFT,示意图如下所示:

tu4.png

与频域抽取类似,时域抽取的输入序列(x)和计算输入序列(X1*)的标号不统一,二者同样存在二进制倒序的关系,例如x[1],标号为001,二进制倒序后为100,对应十进制5,对应计算输入序列的X12[0]。

4.其他基的快速傅里叶变换

4.1.不同基下系数W的性质

对于基4的FFT,先推导W系数的性质:

W_N^{k,n+\frac{m}{4}N} = e^{-j\frac{2\pi}{N}k(n+\frac{m}{4}N)} = e^{-j\frac{2\pi}{N}kn} \times e^{-j\frac{2\pi}{N}\times\frac{m}{4}Nk } = W_N^{k,n} \times e^{-j\frac{\pi}{2}mk}
W_N^{k,n+\frac{m}{4}N} = e^{-j\frac{2\pi}{N}k(n+\frac{m}{4}N)} = e^{-j\frac{2\pi}{N}kn} \times e^{-j\frac{2\pi}{N}\times\frac{m}{4}Nk } = W_N^{k,n} \times e^{-j\frac{\pi}{2}mk}

对于不同的m有以下情况:

m取值

等式

1

2

3

再考虑

k = 4r+m
k = 4r+m

在m取1,2,3下的情况,将

k=4r+m
k=4r+m

代入W的表达式:

W_N^{4r+m,n} = e^{-j\frac{2\pi}{N}(4r+m)n} = e^{-j\frac{2\pi}{N/4}rn} \times e^{-j\frac{2\pi}{N}mn} = e^{-j\frac{2\pi}{N}mn} \times W_{N/4}^{r,n}
W_N^{4r+m,n} = e^{-j\frac{2\pi}{N}(4r+m)n} = e^{-j\frac{2\pi}{N/4}rn} \times e^{-j\frac{2\pi}{N}mn} = e^{-j\frac{2\pi}{N}mn} \times W_{N/4}^{r,n}

考虑

n = 4m+r
n = 4m+r

在r取1,2,3下的情况,代入:

W_N^{k,4m+r} = e^{-j\frac{2\pi}{N}k(4m+r)} = e^{-j\frac{2\pi}{N/4}mk} \times e^{-j\frac{2\pi}{N}rk} = e^{-j\frac{2\pi}{N}rk} \times W_{N/4}^{k,m}
W_N^{k,4m+r} = e^{-j\frac{2\pi}{N}k(4m+r)} = e^{-j\frac{2\pi}{N/4}mk} \times e^{-j\frac{2\pi}{N}rk} = e^{-j\frac{2\pi}{N}rk} \times W_{N/4}^{k,m}

考虑

k = r + m\times \frac{N}{4}
k = r + m\times \frac{N}{4}

且周期为

\frac{N}{4}
\frac{N}{4}

的情况:

W_{N/4}^{r+m\times \frac{N}{4},n} = e^{-j\frac{2\pi}{N/4}(r+m\frac{N}{4})n} = e^{-j\frac{2\pi}{N/4}rn} \times e^{-j\frac{2\pi}{N/4}mn\frac{N}{4}} =e^{-j2\pi mn} \times W_{N/4}^{r,n} = W_{N/4}^{r,n}
W_{N/4}^{r+m\times \frac{N}{4},n} = e^{-j\frac{2\pi}{N/4}(r+m\frac{N}{4})n} = e^{-j\frac{2\pi}{N/4}rn} \times e^{-j\frac{2\pi}{N/4}mn\frac{N}{4}} =e^{-j2\pi mn} \times W_{N/4}^{r,n} = W_{N/4}^{r,n}

4.2.基4的快速傅里叶变换

4.2.1.基4FFT蝶形运算

在实际的硬件实现中,由于每一步的结果都需要保存,对于流水线式的FFT而言,则分解的次数就是流水线的级数,此若使用基2FFT,则需要消耗大量的寄存器或RAM空间保存中间数据,因此实际ASIC实现时多使用基4的FFT和基8的FFT。首先考虑基4FFT,4点DFT的计算公式如下所示:

X[k] = \sum\limits_{n=0}^3{W_4^{n,k}\times x[n]},W_4^{n,k} = e^{-j\frac{\pi}{2}nk}
X[k] = \sum\limits_{n=0}^3{W_4^{n,k}\times x[n]},W_4^{n,k} = e^{-j\frac{\pi}{2}nk}

考虑量化系数,将其展开为矩阵模式,可以发现每个结果的计算均不包含乘法:

X = \left[\begin{matrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{matrix}\right] = \left[\begin{matrix} W_4^{0,0} & W_4^{0,1} & W_4^{0,2} & W_4^{0,3} \\ W_4^{1,0} & W_4^{1,1} & W_4^{1,2} & W_4^{1,3} \\ W_4^{2,0} & W_4^{2,1} & W_4^{2,2} & W_4^{2,3} \\ W_4^{3,0} & W_4^{3,1} & W_4^{3,2} & W_4^{3,3} \\ \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{matrix}\right] = \left[\begin{matrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 &-1 & 1 & -1 \\ 1 & j & -1 & -j \\ \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{matrix}\right]
X = \left[\begin{matrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{matrix}\right] = \left[\begin{matrix} W_4^{0,0} & W_4^{0,1} & W_4^{0,2} & W_4^{0,3} \\ W_4^{1,0} & W_4^{1,1} & W_4^{1,2} & W_4^{1,3} \\ W_4^{2,0} & W_4^{2,1} & W_4^{2,2} & W_4^{2,3} \\ W_4^{3,0} & W_4^{3,1} & W_4^{3,2} & W_4^{3,3} \\ \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{matrix}\right] = \left[\begin{matrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 &-1 & 1 & -1 \\ 1 & j & -1 & -j \\ \end{matrix}\right] \times \left[\begin{matrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{matrix}\right]

其蝶形运算如下所示,左右分别是保持输入顺序和保持输出顺序的蝶形运算示意图:

tu5.png

4.2.2.频域抽取

现在考虑将一个长度为

N=4^a
N=4^a

的傅里叶变换进行基4分解,首先考虑频域抽取的方法,将计算序列按先后分为四段:

X[k] = \sum\limits_{n=0}^{\frac{N}{4}-1}{x[n] \times W_N^{k,n}} + \sum\limits_{n=0}^{\frac{N}{4}-1}{x[n+\frac{N}{4}] \times W_N^{k,n+\frac{N}{4}}} + \sum\limits_{n=0}^{\frac{N}{4}-1}{x[n+\frac{N}{2}] \times W_N^{k,n+\frac{N}{2}}}+ \sum\limits_{n=0}^{\frac{N}{4}-1}{x[n+\frac{3}{4}N] \times W_N^{k,n+\frac{3}{4}N}}
X[k] = \sum\limits_{n=0}^{\frac{N}{4}-1}{x[n] \times W_N^{k,n}} + \sum\limits_{n=0}^{\frac{N}{4}-1}{x[n+\frac{N}{4}] \times W_N^{k,n+\frac{N}{4}}} + \sum\limits_{n=0}^{\frac{N}{4}-1}{x[n+\frac{N}{2}] \times W_N^{k,n+\frac{N}{2}}}+ \sum\limits_{n=0}^{\frac{N}{4}-1}{x[n+\frac{3}{4}N] \times W_N^{k,n+\frac{3}{4}N}}

代入W的变换性质,有:

X[k] = \sum\limits_{n=0}^{\frac{N}{4}-1}{(x[n] + (-j)^kx[n+\frac{N}{4}] + (-1)^kx[n + \frac{N}{2}] + (j)^kx[n + \frac{3}{4}N]) \times W_N^{k,n}}
X[k] = \sum\limits_{n=0}^{\frac{N}{4}-1}{(x[n] + (-j)^kx[n+\frac{N}{4}] + (-1)^kx[n + \frac{N}{2}] + (j)^kx[n + \frac{3}{4}N]) \times W_N^{k,n}}

再进行间隔抽取,代入

k =4r+m
k =4r+m

和W的性质有:

X[4r+m] = \sum\limits_{n=0}^{\frac{N}{4}-1}{(x[n] + (-j)^{4r+m}x[n+\frac{N}{4}] + (-1)^{4r+m}x[n + \frac{N}{2}] + (j)^{4r+m}x[n + \frac{3}{4}N]) \times W_N^{4r+m,n}} \\ = \sum\limits_{n=0}^{\frac{N}{4}-1}{(x[n] + (-j)^{m}x[n+\frac{N}{4}] + (-1)^{m}x[n + \frac{N}{2}] + (j)^{m}x[n + \frac{3}{4}N]) \times e^{-j\frac{2\pi}{N}mn} \times W_{N/4}^{r,n}}
X[4r+m] = \sum\limits_{n=0}^{\frac{N}{4}-1}{(x[n] + (-j)^{4r+m}x[n+\frac{N}{4}] + (-1)^{4r+m}x[n + \frac{N}{2}] + (j)^{4r+m}x[n + \frac{3}{4}N]) \times W_N^{4r+m,n}} \\ = \sum\limits_{n=0}^{\frac{N}{4}-1}{(x[n] + (-j)^{m}x[n+\frac{N}{4}] + (-1)^{m}x[n + \frac{N}{2}] + (j)^{m}x[n + \frac{3}{4}N]) \times e^{-j\frac{2\pi}{N}mn} \times W_{N/4}^{r,n}}

取序列

T_m
T_m

,其表达为:

T_m[n] = (x[n] + (-j)^{m}x[n+\frac{N}{4}] + (-1)^{m}x[n + \frac{N}{2}] + (j)^{m}x[n + \frac{3}{4}N]) \times e^{-j\frac{2\pi}{N}mn},n < \frac{N}{4}
T_m[n] = (x[n] + (-j)^{m}x[n+\frac{N}{4}] + (-1)^{m}x[n + \frac{N}{2}] + (j)^{m}x[n + \frac{3}{4}N]) \times e^{-j\frac{2\pi}{N}mn},n < \frac{N}{4}

使用矩阵形式为,其使用的系数矩阵和蝶形计算相同:

\left[\begin{matrix} T_0[n] \\ T_1[n] \\ T_2[n] \\T_3[n] \end{matrix}\right] = \left[\begin{matrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 &-1 & 1 & -1 \\ 1 & j & -1 & -j \\ \end{matrix}\right] \times \left[\begin{matrix} x[n] \\ x[n+\frac{N}{4}] \\ x[x+\frac{N}{2}] \\x[x+\frac{3N}{4}] \end{matrix}\right]
\left[\begin{matrix} T_0[n] \\ T_1[n] \\ T_2[n] \\T_3[n] \end{matrix}\right] = \left[\begin{matrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 &-1 & 1 & -1 \\ 1 & j & -1 & -j \\ \end{matrix}\right] \times \left[\begin{matrix} x[n] \\ x[n+\frac{N}{4}] \\ x[x+\frac{N}{2}] \\x[x+\frac{3N}{4}] \end{matrix}\right]

取其FFT为:

FFT(T_m) = \sum\limits_{n=0}^{\frac{N}{4}-1}{(x[n] + (-j)^{m}x[n+\frac{N}{4}] + (-1)^{m}x[n + \frac{N}{2}] + (j)^{m}x[n + \frac{3}{4}N]) \times e^{-j\frac{2\pi}{N}mn} \times W_{N/4}^{r,n}}
FFT(T_m) = \sum\limits_{n=0}^{\frac{N}{4}-1}{(x[n] + (-j)^{m}x[n+\frac{N}{4}] + (-1)^{m}x[n + \frac{N}{2}] + (j)^{m}x[n + \frac{3}{4}N]) \times e^{-j\frac{2\pi}{N}mn} \times W_{N/4}^{r,n}}

则可获得基4的FFT递推公式,即:

FFT(X)[k] = \begin{cases} FFT(T_0)[k/4] & k\%4=0 \\ FFT(T_1)[(k-1)/4] & k\%4=1 \\FFT(T_2)[(k-2)/4] & k\%4=2\\FFT(T_3)[(k-3)/4] & k\%4=3\end{cases}\\T_m[n] = (x[n] + (-j)^{m}x[n+\frac{N}{4}] + (-1)^{m}x[n + \frac{N}{2}] + (j)^{m}x[n + \frac{3}{4}N]) \times e^{-j\frac{2\pi}{N}mn},n < \frac{N}{4}
FFT(X)[k] = \begin{cases} FFT(T_0)[k/4] & k\%4=0 \\ FFT(T_1)[(k-1)/4] & k\%4=1 \\FFT(T_2)[(k-2)/4] & k\%4=2\\FFT(T_3)[(k-3)/4] & k\%4=3\end{cases}\\T_m[n] = (x[n] + (-j)^{m}x[n+\frac{N}{4}] + (-1)^{m}x[n + \frac{N}{2}] + (j)^{m}x[n + \frac{3}{4}N]) \times e^{-j\frac{2\pi}{N}mn},n < \frac{N}{4}

以16点FFT为例,基4FFT将其分为两级实现,如下图所示:

tu6.png

4.2.3.时域抽取

对于离散傅里叶计算公式,进行间隔抽取,将

n=4m+r
n=4m+r

代入:

X[k] = \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m]\times W_N^{k,4m}} + \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+1]\times W_N^{k,4m+1}} + \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+2]\times W_N^{k,4m+2}} + \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+3]\times W_N^{k,4m+3}}
X[k] = \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m]\times W_N^{k,4m}} + \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+1]\times W_N^{k,4m+1}} + \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+2]\times W_N^{k,4m+2}} + \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+3]\times W_N^{k,4m+3}}

代入W的性质,取

k < \frac{N}{4}
k < \frac{N}{4}

,有:

X[k] = \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}k} \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+1]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}2k}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+2]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}3k}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+3]\times W_{N/4}^{k,m}},k < \frac{N}{4}
X[k] = \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}k} \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+1]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}2k}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+2]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}3k}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+3]\times W_{N/4}^{k,m}},k < \frac{N}{4}

取序列

T_r
T_r

有:

T_r[n] = x[4n+r]
T_r[n] = x[4n+r]

代入有:

X[k] = FFT(T_0) + e^{-j\frac{2\pi}{N}k} \times FFT(T_1) + e^{-j\frac{2\pi}{N}2k}\times FFT(T_2) + e^{-j\frac{2\pi}{N}3k}\times FFT(T_3),k < \frac{N}{4}
X[k] = FFT(T_0) + e^{-j\frac{2\pi}{N}k} \times FFT(T_1) + e^{-j\frac{2\pi}{N}2k}\times FFT(T_2) + e^{-j\frac{2\pi}{N}3k}\times FFT(T_3),k < \frac{N}{4}

现在考虑

\frac{N}4{} \leq k < N
\frac{N}4{} \leq k < N

的情况,代入

k = k + r\frac{N}{4},r=1,2,3
k = k + r\frac{N}{4},r=1,2,3

和W的性质,有:

X[k+r\frac{N}{4}] = \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}(k+r\frac{N}{4})} \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+1]\times W_{N/4}^{k,m}} \\+ e^{-j\frac{2\pi}{N}2(k+r\frac{N}{4})}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+2]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}3(k+r\frac{N}{4})}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+3]\times W_{N/4}^{k,m}},k < \frac{N}{4}
X[k+r\frac{N}{4}] = \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}(k+r\frac{N}{4})} \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+1]\times W_{N/4}^{k,m}} \\+ e^{-j\frac{2\pi}{N}2(k+r\frac{N}{4})}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+2]\times W_{N/4}^{k,m}} + e^{-j\frac{2\pi}{N}3(k+r\frac{N}{4})}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+3]\times W_{N/4}^{k,m}},k < \frac{N}{4}

整理可得:

X[k+r\frac{N}{4}] = \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m]\times W_{N/4}^{k,m}} + e^{-j\frac{\pi}{2}r} e^{-j\frac{2\pi}{N}k} \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+1]\times W_{N/4}^{k,m}} \\+ e^{-j\pi r} e^{-j\frac{2\pi}{N}2k}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+2]\times W_{N/4}^{k,m}} + e^{-j\frac{3\pi}{2}r} e^{-j\frac{2\pi}{N}3k}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+3]\times W_{N/4}^{k,m}} \\ = FFT(T_0)[k] + (-j)^re^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k] + (-1)^re^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k] + (j)^re^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k],k < \frac{N}{4}
X[k+r\frac{N}{4}] = \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m]\times W_{N/4}^{k,m}} + e^{-j\frac{\pi}{2}r} e^{-j\frac{2\pi}{N}k} \sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+1]\times W_{N/4}^{k,m}} \\+ e^{-j\pi r} e^{-j\frac{2\pi}{N}2k}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+2]\times W_{N/4}^{k,m}} + e^{-j\frac{3\pi}{2}r} e^{-j\frac{2\pi}{N}3k}\sum\limits_{m=0}^{\frac{N}{4}-1}{x[4m+3]\times W_{N/4}^{k,m}} \\ = FFT(T_0)[k] + (-j)^re^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k] + (-1)^re^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k] + (j)^re^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k],k < \frac{N}{4}

根据上式列出矩阵形式:

\left[\begin{matrix} X[k] \\ X[k+\frac{N}{4}] \\ X[k +\frac{N}{2}] \\X[k+\frac{3N}{4}] \end{matrix}\right] = \left[\begin{matrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 &-1 & 1 & -1 \\ 1 & j & -1 & -j \\ \end{matrix}\right] \times \left[\begin{matrix} FFT(T_0)[k] \\ e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k] \\e^{-j\frac{2\pi}{N}2k} \times FFT(T_2)[k] \\e^{-j\frac{2\pi}{N}3k} \times FFT(T_3)[k] \end{matrix}\right]
\left[\begin{matrix} X[k] \\ X[k+\frac{N}{4}] \\ X[k +\frac{N}{2}] \\X[k+\frac{3N}{4}] \end{matrix}\right] = \left[\begin{matrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 &-1 & 1 & -1 \\ 1 & j & -1 & -j \\ \end{matrix}\right] \times \left[\begin{matrix} FFT(T_0)[k] \\ e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k] \\e^{-j\frac{2\pi}{N}2k} \times FFT(T_2)[k] \\e^{-j\frac{2\pi}{N}3k} \times FFT(T_3)[k] \end{matrix}\right]

可以得到递推公式:

X[k] = \begin{cases} FFT(T_0)[k] + e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k] +e^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k] +e^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k] & k < \frac{N}{4} \\ FFT(T_0)[k-\frac{N}{4}] -j \times e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k-\frac{N}{4}] -e^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k-\frac{N}{4}] +j\times e^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k-\frac{N}{4}] & \frac{N}{4} \leq k < \frac{N}{2} \\ FFT(T_0)[k-\frac{N}{2}] - e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k-\frac{N}{2}] +e^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k-\frac{N}{2}] - e^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k-\frac{N}{2}] & \frac{N}{2} \leq k < \frac{3N}{4} \\ FFT(T_0)[k-\frac{3N}{4}] +j \times e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k-\frac{3N}{4}] -e^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k-\frac{3N}{4}] -j\times e^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k-\frac{3N}{4}] & k>\frac{3N}{4} \\ \end{cases}
X[k] = \begin{cases} FFT(T_0)[k] + e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k] +e^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k] +e^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k] & k < \frac{N}{4} \\ FFT(T_0)[k-\frac{N}{4}] -j \times e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k-\frac{N}{4}] -e^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k-\frac{N}{4}] +j\times e^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k-\frac{N}{4}] & \frac{N}{4} \leq k < \frac{N}{2} \\ FFT(T_0)[k-\frac{N}{2}] - e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k-\frac{N}{2}] +e^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k-\frac{N}{2}] - e^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k-\frac{N}{2}] & \frac{N}{2} \leq k < \frac{3N}{4} \\ FFT(T_0)[k-\frac{3N}{4}] +j \times e^{-j\frac{2\pi}{N}k} \times FFT(T_1)[k-\frac{3N}{4}] -e^{-j\frac{2\pi}{N}2k}\times FFT(T_2)[k-\frac{3N}{4}] -j\times e^{-j\frac{2\pi}{N}3k}\times FFT(T_3)[k-\frac{3N}{4}] & k>\frac{3N}{4} \\ \end{cases}
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.周期离散信号的傅里叶变换
  • 2.快速傅里叶变换(分治法)
    • 2.1.系数W性质
      • 2.2.频域抽取基2快速傅里叶变换
        • 2.3.时域抽取基2快速傅里叶变换
        • 3.快速傅里叶变换的实现
          • 3.1.蝶形运算
            • 3.2.频域抽取基2FFT的实现
              • 3.3.时域抽取基2FFT的实现
              • 4.其他基的快速傅里叶变换
                • 4.1.不同基下系数W的性质
                  • 4.2.基4的快速傅里叶变换
                    • 4.2.1.基4FFT蝶形运算
                    • 4.2.2.频域抽取
                    • 4.2.3.时域抽取
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档