前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >FPGA大赛【三】基础模块介绍

FPGA大赛【三】基础模块介绍

作者头像
数字积木
发布2021-04-15 10:55:06
8000
发布2021-04-15 10:55:06
举报
文章被收录于专栏:数字积木

【注】该项目是我们团队参加2019届全国大学生FPGA大赛的作品,系统主要实现视频任意角度旋转。该项目最终晋级决赛,并获得紫光同创企业特别奖。该系列文章介绍我们团队的作品。关注公众号“数字积木”对话框回复 FPGA2019 ,即可获得该项目的工程源代码,详细的文档说明,MATLAB仿真代码。

基础模块介绍

3.1 OV5640摄像头的初始化

OV5640 摄像头模组采用美国 OmniVision(豪威)CMOS 芯片图像传感器 OV5640,支持自动对焦的功能。OV5640 芯片支持 DVP 和 MIPI 接口。

OV5640 的寄存器配置是通过 FPGA 的 I2C(也称为 SCCB 接口)接口来配置。用户需要配置正确的寄存器值让 OV5640 输出我们需要的图像格式。

OV5640 在 HREF 信号为高时输出一行的图像数据,输出数据在 PCLK 的上升沿的时候有效。因为 RGB565 显示每个像数为 16bit, 但 OV5640 每个 PCLK 输出的是 8bit,所以每个图像的像数分两次输出,第一个 Byte 输出为 R4~R0 和 G5~G3, 第二个 Byte 输出为 G2~G0 和 B4~B0,将前后 2 个字节拼接起来就是 16Bit RGB565 数据。

3.2 DDR

DDR作为数据传输过程中的重要节点,在摄像头采菊数据的传输方面扮演者关键的角色,DDR对数据的读于写都直接的影响摄像头的数据传输的稳定性。如下图是ddr对摄像头数据的采集过程:

3.3 乒乓操作

乒乓操作是一个主要用于数据流控制的处理技巧,典型的乒乓操作如图所示:

外部输入数据流通过“输入数据选择控制”模块送入两个数据缓冲区中,数据缓冲模块可以为任何存储模块,比较常用的存储单元为双口RAM(Dual RAM),SRAM,SDRAM,FIFO等。

在第1个缓冲周期,将输入的数据流缓存到“数据缓冲1”模块,在第2个缓冲周期,“输入数据选择控制”模块将输入的数据流缓存到“数据缓冲2”模块的同时,“输出数据选择控制”模块将“数据缓冲1”模块第一个周期缓存的数据流送到“后续处理”,模块进行后续的数据处理,在第三个缓冲周期,在“输入数据选择控制”模块的

再次切换后,输入的数据流缓存到“数据缓冲1”模块,与此同时,“输出数据选择控制”模块也做出切换,将“数据缓冲2”模块缓存的第二个周期的数据送到“后续处理模块”,如此循环。

这里正是利用了乒乓操作完成数据的无缝缓冲与处理,乒乓操作可以通过“输入数据选择控制”和“输出数据选择控制”按节拍,相互配合地进行来回切换,将经过缓冲的数据流没有停顿的送到“后续处理模块”。

比如将乒乓操作运用在液晶显示的控制模块上,如图所示。

对于外部接口传输的图像数据,以一帧图像为单位进行SDRAM的切换控制,当SDRAM1缓存图像数据时,液晶显示的是SDRAM2的数据图像;反之,当SDRAM2缓存图像数据时,液晶显示的是SDRAM1的数据图像,如此反复,这样出路的好处在于液晶显示图像切换瞬间完成,掩盖了可能比较缓慢的图像数据流变换过程。

3.4 VGA时序

显示器扫描方式分为逐行扫描和隔行扫描:逐行扫描是扫描从屏幕左上角一点开始,从左向右逐点扫描,每扫描完一行,电子束回到屏幕的左边下一行的起始位置,在这期间,CRT对电子束进行消隐,每行结束时,用行同步信号进行同步;当扫描完所有的行,形成一帧,用场同步信号进行场同步,并使扫描回到屏幕左上方,同时进行场消隐,开始下一帧。隔行扫描是指电子束扫描时每隔一行扫一行,完成一屏后再返回来扫

描剩下的行,隔行扫描的显示器闪烁的厉害,会让使用者的眼睛疲劳。

完成一行扫描的时间称为水平扫描时间,其倒数称为行频率;完成一帧(整屏)扫描的时间称为垂直扫描时间,其倒数称为场频率,即刷新一屏的频率,常见的有60Hz,75Hz等等。标准的VGA显示的场频60Hz,行频31.5KHz。

行场消隐信号:是针对老式显像管的成像扫描电路而言的。电子枪所发出的电子束从屏幕的左上角开始向右扫描,一行扫完需将电子束从右边移回到左边以便扫描第二行。在移动期间就必须有一个信号加到电路上,使得电子束不能发出。不然这个回扫线会破坏屏幕图像的。这个阻止回扫线产生的信号就叫作消隐信号,场信号的消隐也是一个道理。

显示带宽:带宽指的显示器可以处理的频率范围。如果是60Hz刷新频率的VGA,其带宽达640x480x60=18.4MHz,70Hz的刷新频率1024x768分辨率的SVGA,其带宽达1024x768x70=55.1MHz。

时钟频率:以640x480@59.94Hz(60Hz)为例,每场对应525个行周期(525 = 10 + 2 + 480+33),其中480为显示行。每场有场同步信号,该脉冲宽度为2个行周期的负脉冲,每显示行包括800点时钟,其中640点为有效显示区,每一行有一个行同步信号,该脉冲宽度为96个点时钟。由此可知:行频为525*59.94=31469Hz,需要点时钟频率:525*800*59.94约25Mhz.

VGA的行时序可知:每一行都有一个负极性行同步脉冲(Sync a),是数据行的结束标志,同时也是下一行的开始标志。在同步脉冲之后为显示后沿(Back porch b),在显示时序段(Display interval c)显示器为亮的过程,RGB数据驱动一行上的每一个像素点,从而显示一行。在一行的最后为显示前沿(Front porch d)。在显示时间段(Display interval c)之外没有图像投射到屏幕是插入消隐信号。同步脉冲(Sync a)、显示后沿(Back porch b)和显示前沿(Front porch d)都是在行消隐间隔内(Horizontal Blanking Interval),当消隐有效时,RGB信号无效,屏幕不显示数据。

3.5 HDMI显示

HDMI 采用和 DVI 相同的传输原理——TMDS(Transition Minimized Differential signal),最小化传输差分信号。

TMDS 传输系统分为分为两个部分:发送端和接收端。TMDS 发送端收到 HDMI 接口传来的表示 RGB 信号的 24 位并行数据(TMDS 对每个像素的 RGB 三原色分别按 8bit 编码,即 R 信号有 8 位,G 信号有 8 位,B 信号有 8 位),然后对这些数据进行编码和并/串转换,再将表示 3 个 RGB 信号的数据分别分配到独立的传输通道发送出去。接收端接收来自发送端的串行信号,对其进行解码和串/并转换,然后发送到显示器的控制端。与此同时也接收时钟信号,以实现同步。

8 位数据经过编码和直流平衡得到 10 位最小化数据,这仿佛增加了冗余位,对传输链路的带宽要求更高,但事实上,通过这种算法得到的 10 位数据在更长的同轴电缆中传输的可靠性增强了。

下图是一个例子,说明对一个 8 位的并行 RED 数据编码、并/串转换。

3.6 黑白以及灰度显示

在原图显示的基础上,我们添加了黑白以及灰度的显示模式,提高了整个系统的可观赏性,下面具体分析算法如下。

首先是灰度算法,此算法有一个著名的心理学公式引出:

Gray = R*0.299 + G*0.587 + B*0.114。

但在运算的时候由于公式中出现了浮点数,因此为了提高运算速度,则需要采用整数算法。注意到系数都是3位精度的没有,我们可以将它们缩放1000倍来实现整数运算算法:Gray = (R*299 + G*587 + B*114 + 500) / 1000。

本文完!!!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-04-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数字积木 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 【注】该项目是我们团队参加2019届全国大学生FPGA大赛的作品,系统主要实现视频任意角度旋转。该项目最终晋级决赛,并获得紫光同创企业特别奖。该系列文章介绍我们团队的作品。关注公众号“数字积木”对话框回复 FPGA2019 ,即可获得该项目的工程源代码,详细的文档说明,MATLAB仿真代码。
    • 3.1 OV5640摄像头的初始化
      • 3.2 DDR
        • 3.3 乒乓操作
          • 乒乓操作是一个主要用于数据流控制的处理技巧,典型的乒乓操作如图所示:
            • 3.4 VGA时序
              • 3.6 黑白以及灰度显示
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档