前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python 3深度置信网络(DBN)在Tensorflow中的实现MNIST手写数字识别

Python 3深度置信网络(DBN)在Tensorflow中的实现MNIST手写数字识别

原创
作者头像
青年夏日
修改2021-04-19 10:45:40
2K0
修改2021-04-19 10:45:40
举报
文章被收录于专栏:青年夏日

Deep Learning with TensorFlow IBM Cognitive Class ML0120EN Module 5 - Autoencoders

使用DBN识别手写体 传统的多层感知机或者神经网络的一个问题: 反向传播可能总是导致局部最小值。 当误差表面(error surface)包含了多个凹槽,当你做梯度下降时,你找到的并不是最深的凹槽。 下面你将会看到DBN是怎么解决这个问题的。

深度置信网络

深度置信网络可以通过额外的预训练规程解决局部最小值的问题。 预训练在反向传播之前做完,这样可以使错误率离最优的解不是那么远,也就是我们在最优解的附近。再通过反向传播慢慢地降低错误率。 深度置信网络主要分成两部分。第一部分是多层玻尔兹曼感知机,用于预训练我们的网络。第二部分是前馈反向传播网络,这可以使RBM堆叠的网络更加精细化。

1. 加载必要的深度置信网络库

代码语言:javascript
复制
# urllib is used to download the utils file from deeplearning.net
import urllib.request
response = urllib.request.urlopen('http://deeplearning.net/tutorial/code/utils.py')
content = response.read().decode('utf-8')
target = open('utils.py', 'w')
target.write(content)
target.close()
# Import the math function for calculations
import math
# Tensorflow library. Used to implement machine learning models
import tensorflow as tf
# Numpy contains helpful functions for efficient mathematical calculations
import numpy as np
# Image library for image manipulation
from PIL import Image
# import Image
# Utils file
from utils import tile_raster_images

2. 构建RBM层

RBM的细节参考【https://blog.csdn.net/sinat_28371057/article/details/115795086

rbm
rbm

​ 为了在Tensorflow中应用DBN, 下面创建一个RBM的类

代码语言:javascript
复制
class RBM(object):
    def __init__(self, input_size, output_size):
        # Defining the hyperparameters
        self._input_size = input_size  # Size of input
        self._output_size = output_size  # Size of output
        self.epochs = 5  # Amount of training iterations
        self.learning_rate = 1.0  # The step used in gradient descent
        self.batchsize = 100  # The size of how much data will be used for training per sub iteration

        # Initializing weights and biases as matrices full of zeroes
        self.w = np.zeros([input_size, output_size], np.float32)  # Creates and initializes the weights with 0
        self.hb = np.zeros([output_size], np.float32)  # Creates and initializes the hidden biases with 0
        self.vb = np.zeros([input_size], np.float32)  # Creates and initializes the visible biases with 0

    # Fits the result from the weighted visible layer plus the bias into a sigmoid curve
    def prob_h_given_v(self, visible, w, hb):
        # Sigmoid
        return tf.nn.sigmoid(tf.matmul(visible, w) + hb)

    # Fits the result from the weighted hidden layer plus the bias into a sigmoid curve
    def prob_v_given_h(self, hidden, w, vb):
        return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

    # Generate the sample probability
    def sample_prob(self, probs):
        return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))

    # Training method for the model
    def train(self, X):
        # Create the placeholders for our parameters
        _w = tf.placeholder("float", [self._input_size, self._output_size])
        _hb = tf.placeholder("float", [self._output_size])
        _vb = tf.placeholder("float", [self._input_size])

        prv_w = np.zeros([self._input_size, self._output_size],
                         np.float32)  # Creates and initializes the weights with 0
        prv_hb = np.zeros([self._output_size], np.float32)  # Creates and initializes the hidden biases with 0
        prv_vb = np.zeros([self._input_size], np.float32)  # Creates and initializes the visible biases with 0

        cur_w = np.zeros([self._input_size, self._output_size], np.float32)
        cur_hb = np.zeros([self._output_size], np.float32)
        cur_vb = np.zeros([self._input_size], np.float32)
        v0 = tf.placeholder("float", [None, self._input_size])

        # Initialize with sample probabilities
        h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))
        v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
        h1 = self.prob_h_given_v(v1, _w, _hb)

        # Create the Gradients
        positive_grad = tf.matmul(tf.transpose(v0), h0)
        negative_grad = tf.matmul(tf.transpose(v1), h1)

        # Update learning rates for the layers
        update_w = _w + self.learning_rate * (positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])
        update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)
        update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)

        # Find the error rate
        err = tf.reduce_mean(tf.square(v0 - v1))

        # Training loop
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            # For each epoch
            for epoch in range(self.epochs):
                # For each step/batch
                for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X), self.batchsize)):
                    batch = X[start:end]
                    # Update the rates
                    cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    prv_w = cur_w
                    prv_hb = cur_hb
                    prv_vb = cur_vb
                error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})
                print('Epoch: %d' % epoch, 'reconstruction error: %f' % error)
            self.w = prv_w
            self.hb = prv_hb
            self.vb = prv_vb

    # Create expected output for our DBN
    def rbm_outpt(self, X):
        input_X = tf.constant(X)
        _w = tf.constant(self.w)
        _hb = tf.constant(self.hb)
        out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            return sess.run(out)

3. 导入MNIST数据

使用one-hot encoding标注的形式载入MNIST图像数据。

代码语言:javascript
复制
# Getting the MNIST data provided by Tensorflow
from tensorflow.examples.tutorials.mnist import input_data

# Loading in the mnist data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\
    mnist.test.labels
代码语言:javascript
复制
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

4. 建立DBN

代码语言:javascript
复制
RBM_hidden_sizes = [500, 200 , 50 ] #create 4 layers of RBM with size 785-500-200-50

#Since we are training, set input as training data
inpX = trX

#Create list to hold our RBMs
rbm_list = []

#Size of inputs is the number of inputs in the training set
input_size = inpX.shape[1]

#For each RBM we want to generate
for i, size in enumerate(RBM_hidden_sizes):
    print('RBM: ',i,' ',input_size,'->', size)
    rbm_list.append(RBM(input_size, size))
    input_size = size
代码语言:javascript
复制
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
RBM:  0   784 -> 500
RBM:  1   500 -> 200
RBM:  2   200 -> 50

rbm的类创建好了和数据都已经载入,可以创建DBN。 在这个例子中,我们使用了3个RBM,一个的隐藏层单元个数为500, 第二个RBM的隐藏层个数为200,最后一个为50. 我们想要生成训练数据的深层次表示形式。

5.训练RBM

我们将使用***rbm.train()***开始预训练步骤, 单独训练堆中的每一个RBM,并将当前RBM的输出作为下一个RBM的输入。

代码语言:javascript
复制
#For each RBM in our list
for rbm in rbm_list:
    print('New RBM:')
    #Train a new one
    rbm.train(inpX) 
    #Return the output layer
    inpX = rbm.rbm_outpt(inpX)
代码语言:javascript
复制
New RBM:
Epoch: 0 reconstruction error: 0.061174
Epoch: 1 reconstruction error: 0.052962
Epoch: 2 reconstruction error: 0.049679
Epoch: 3 reconstruction error: 0.047683
Epoch: 4 reconstruction error: 0.045691
New RBM:
Epoch: 0 reconstruction error: 0.035260
Epoch: 1 reconstruction error: 0.030811
Epoch: 2 reconstruction error: 0.028873
Epoch: 3 reconstruction error: 0.027428
Epoch: 4 reconstruction error: 0.026980
New RBM:
Epoch: 0 reconstruction error: 0.059593
Epoch: 1 reconstruction error: 0.056837
Epoch: 2 reconstruction error: 0.055571
Epoch: 3 reconstruction error: 0.053817
Epoch: 4 reconstruction error: 0.054142

现在我们可以将输入数据的学习好的表示转换为有监督的预测,比如一个线性分类器。特别地,我们使用这个浅层神经网络的最后一层的输出对数字分类。

6. 神经网络

下面的类使用了上面预训练好的RBMs实现神经网络。

代码语言:javascript
复制
import numpy as np
import math
import tensorflow as tf


class NN(object):

    def __init__(self, sizes, X, Y):
        # Initialize hyperparameters
        self._sizes = sizes
        self._X = X
        self._Y = Y
        self.w_list = []
        self.b_list = []
        self._learning_rate = 1.0
        self._momentum = 0.0
        self._epoches = 10
        self._batchsize = 100
        input_size = X.shape[1]

        # initialization loop
        for size in self._sizes + [Y.shape[1]]:
            # Define upper limit for the uniform distribution range
            max_range = 4 * math.sqrt(6. / (input_size + size))

            # Initialize weights through a random uniform distribution
            self.w_list.append(
                np.random.uniform(-max_range, max_range, [input_size, size]).astype(np.float32))

            # Initialize bias as zeroes
            self.b_list.append(np.zeros([size], np.float32))
            input_size = size

    # load data from rbm
    def load_from_rbms(self, dbn_sizes, rbm_list):
        # Check if expected sizes are correct
        assert len(dbn_sizes) == len(self._sizes)

        for i in range(len(self._sizes)):
            # Check if for each RBN the expected sizes are correct
            assert dbn_sizes[i] == self._sizes[i]

        # If everything is correct, bring over the weights and biases
        for i in range(len(self._sizes)):
            self.w_list[i] = rbm_list[i].w
            self.b_list[i] = rbm_list[i].hb

    # Training method
    def train(self):
        # Create placeholders for input, weights, biases, output
        _a = [None] * (len(self._sizes) + 2)
        _w = [None] * (len(self._sizes) + 1)
        _b = [None] * (len(self._sizes) + 1)
        _a[0] = tf.placeholder("float", [None, self._X.shape[1]])
        y = tf.placeholder("float", [None, self._Y.shape[1]])

        # Define variables and activation functoin
        for i in range(len(self._sizes) + 1):
            _w[i] = tf.Variable(self.w_list[i])
            _b[i] = tf.Variable(self.b_list[i])
        for i in range(1, len(self._sizes) + 2):
            _a[i] = tf.nn.sigmoid(tf.matmul(_a[i - 1], _w[i - 1]) + _b[i - 1])

        # Define the cost function
        cost = tf.reduce_mean(tf.square(_a[-1] - y))

        # Define the training operation (Momentum Optimizer minimizing the Cost function)
        train_op = tf.train.MomentumOptimizer(
            self._learning_rate, self._momentum).minimize(cost)

        # Prediction operation
        predict_op = tf.argmax(_a[-1], 1)

        # Training Loop
        with tf.Session() as sess:
            # Initialize Variables
            sess.run(tf.global_variables_initializer())

            # For each epoch
            for i in range(self._epoches):

                # For each step
                for start, end in zip(
                        range(0, len(self._X), self._batchsize), range(self._batchsize, len(self._X), self._batchsize)):
                    # Run the training operation on the input data
                    sess.run(train_op, feed_dict={
                        _a[0]: self._X[start:end], y: self._Y[start:end]})

                for j in range(len(self._sizes) + 1):
                    # Retrieve weights and biases
                    self.w_list[j] = sess.run(_w[j])
                    self.b_list[j] = sess.run(_b[j])

                print("Accuracy rating for epoch " + str(i) + ": " + str(np.mean(np.argmax(self._Y, axis=1) == \
                                                                                 sess.run(predict_op, feed_dict={_a[0]: self._X, y: self._Y}))))

7. 运行

代码语言:javascript
复制
nNet = NN(RBM_hidden_sizes, trX, trY)
nNet.load_from_rbms(RBM_hidden_sizes,rbm_list)
nNet.train()
代码语言:javascript
复制
Accuracy rating for epoch 0: 0.46683636363636366
Accuracy rating for epoch 1: 0.6561272727272728
Accuracy rating for epoch 2: 0.7678363636363637
Accuracy rating for epoch 3: 0.8370727272727273
Accuracy rating for epoch 4: 0.8684181818181819
Accuracy rating for epoch 5: 0.885
Accuracy rating for epoch 6: 0.8947636363636363
Accuracy rating for epoch 7: 0.9024909090909091
Accuracy rating for epoch 8: 0.9080363636363636
Accuracy rating for epoch 9: 0.9124181818181818

完整代码

pip install tensorflow==1.13.1

代码语言:javascript
复制
# Import the math function for calculations
import math
# Tensorflow library. Used to implement machine learning models
import tensorflow as tf
# Numpy contains helpful functions for efficient mathematical calculations
import numpy as np
# Image library for image manipulation
# import Image
# Utils file
# Getting the MNIST data provided by Tensorflow
from tensorflow.examples.tutorials.mnist import input_data

""" This file contains different utility functions that are not connected
in anyway to the networks presented in the tutorials, but rather help in
processing the outputs into a more understandable way.

For example ``tile_raster_images`` helps in generating a easy to grasp
image from a set of samples or weights.
"""

import numpy


def scale_to_unit_interval(ndar, eps=1e-8):
    """ Scales all values in the ndarray ndar to be between 0 and 1 """
    ndar = ndar.copy()
    ndar -= ndar.min()
    ndar *= 1.0 / (ndar.max() + eps)
    return ndar


def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0),
                       scale_rows_to_unit_interval=True,
                       output_pixel_vals=True):
    """
    Transform an array with one flattened image per row, into an array in
    which images are reshaped and layed out like tiles on a floor.

    This function is useful for visualizing datasets whose rows are images,
    and also columns of matrices for transforming those rows
    (such as the first layer of a neural net).

    :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
    be 2-D ndarrays or None;
    :param X: a 2-D array in which every row is a flattened image.

    :type img_shape: tuple; (height, width)
    :param img_shape: the original shape of each image

    :type tile_shape: tuple; (rows, cols)
    :param tile_shape: the number of images to tile (rows, cols)

    :param output_pixel_vals: if output should be pixel values (i.e. int8
    values) or floats

    :param scale_rows_to_unit_interval: if the values need to be scaled before
    being plotted to [0,1] or not


    :returns: array suitable for viewing as an image.
    (See:`Image.fromarray`.)
    :rtype: a 2-d array with same dtype as X.

    """

    assert len(img_shape) == 2
    assert len(tile_shape) == 2
    assert len(tile_spacing) == 2

    # The expression below can be re-written in a more C style as
    # follows :
    #
    # out_shape    = [0,0]
    # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] -
    #                tile_spacing[0]
    # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] -
    #                tile_spacing[1]
    out_shape = [
        (ishp + tsp) * tshp - tsp
        for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)
    ]

    if isinstance(X, tuple):
        assert len(X) == 4
        # Create an output numpy ndarray to store the image
        if output_pixel_vals:
            out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
                                    dtype='uint8')
        else:
            out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
                                    dtype=X.dtype)

        #colors default to 0, alpha defaults to 1 (opaque)
        if output_pixel_vals:
            channel_defaults = [0, 0, 0, 255]
        else:
            channel_defaults = [0., 0., 0., 1.]

        for i in range(4):
            if X[i] is None:
                # if channel is None, fill it with zeros of the correct
                # dtype
                dt = out_array.dtype
                if output_pixel_vals:
                    dt = 'uint8'
                out_array[:, :, i] = numpy.zeros(
                    out_shape,
                    dtype=dt
                ) + channel_defaults[i]
            else:
                # use a recurrent call to compute the channel and store it
                # in the output
                out_array[:, :, i] = tile_raster_images(
                    X[i], img_shape, tile_shape, tile_spacing,
                    scale_rows_to_unit_interval, output_pixel_vals)
        return out_array

    else:
        # if we are dealing with only one channel
        H, W = img_shape
        Hs, Ws = tile_spacing

        # generate a matrix to store the output
        dt = X.dtype
        if output_pixel_vals:
            dt = 'uint8'
        out_array = numpy.zeros(out_shape, dtype=dt)

        for tile_row in range(tile_shape[0]):
            for tile_col in range(tile_shape[1]):
                if tile_row * tile_shape[1] + tile_col < X.shape[0]:
                    this_x = X[tile_row * tile_shape[1] + tile_col]
                    if scale_rows_to_unit_interval:
                        # if we should scale values to be between 0 and 1
                        # do this by calling the `scale_to_unit_interval`
                        # function
                        this_img = scale_to_unit_interval(
                            this_x.reshape(img_shape))
                    else:
                        this_img = this_x.reshape(img_shape)
                    # add the slice to the corresponding position in the
                    # output array
                    c = 1
                    if output_pixel_vals:
                        c = 255
                    out_array[
                        tile_row * (H + Hs): tile_row * (H + Hs) + H,
                        tile_col * (W + Ws): tile_col * (W + Ws) + W
                    ] = this_img * c
        return out_array

# Class that defines the behavior of the RBM
class RBM(object):
    def __init__(self, input_size, output_size):
        # Defining the hyperparameters
        self._input_size = input_size  # Size of input
        self._output_size = output_size  # Size of output
        self.epochs = 5  # Amount of training iterations
        self.learning_rate = 1.0  # The step used in gradient descent
        self.batchsize = 100  # The size of how much data will be used for training per sub iteration

        # Initializing weights and biases as matrices full of zeroes
        self.w = np.zeros([input_size, output_size], np.float32)  # Creates and initializes the weights with 0
        self.hb = np.zeros([output_size], np.float32)  # Creates and initializes the hidden biases with 0
        self.vb = np.zeros([input_size], np.float32)  # Creates and initializes the visible biases with 0

    # Fits the result from the weighted visible layer plus the bias into a sigmoid curve
    def prob_h_given_v(self, visible, w, hb):
        # Sigmoid
        return tf.nn.sigmoid(tf.matmul(visible, w) + hb)

    # Fits the result from the weighted hidden layer plus the bias into a sigmoid curve
    def prob_v_given_h(self, hidden, w, vb):
        return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

    # Generate the sample probability
    def sample_prob(self, probs):
        return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))

    # Training method for the model
    def train(self, X):
        # Create the placeholders for our parameters
        _w = tf.placeholder("float", [self._input_size, self._output_size])
        _hb = tf.placeholder("float", [self._output_size])
        _vb = tf.placeholder("float", [self._input_size])

        prv_w = np.zeros([self._input_size, self._output_size],
                         np.float32)  # Creates and initializes the weights with 0
        prv_hb = np.zeros([self._output_size], np.float32)  # Creates and initializes the hidden biases with 0
        prv_vb = np.zeros([self._input_size], np.float32)  # Creates and initializes the visible biases with 0

        cur_w = np.zeros([self._input_size, self._output_size], np.float32)
        cur_hb = np.zeros([self._output_size], np.float32)
        cur_vb = np.zeros([self._input_size], np.float32)
        v0 = tf.placeholder("float", [None, self._input_size])

        # Initialize with sample probabilities
        h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))
        v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
        h1 = self.prob_h_given_v(v1, _w, _hb)

        # Create the Gradients
        positive_grad = tf.matmul(tf.transpose(v0), h0)
        negative_grad = tf.matmul(tf.transpose(v1), h1)

        # Update learning rates for the layers
        update_w = _w + self.learning_rate * (positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])
        update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)
        update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)

        # Find the error rate
        err = tf.reduce_mean(tf.square(v0 - v1))

        # Training loop
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            # For each epoch
            for epoch in range(self.epochs):
                # For each step/batch
                for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X), self.batchsize)):
                    batch = X[start:end]
                    # Update the rates
                    cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    prv_w = cur_w
                    prv_hb = cur_hb
                    prv_vb = cur_vb
                error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})
                print('Epoch: %d' % epoch, 'reconstruction error: %f' % error)
            self.w = prv_w
            self.hb = prv_hb
            self.vb = prv_vb

    # Create expected output for our DBN
    def rbm_outpt(self, X):
        input_X = tf.constant(X)
        _w = tf.constant(self.w)
        _hb = tf.constant(self.hb)
        out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            return sess.run(out)

class NN(object):

    def __init__(self, sizes, X, Y):
        # Initialize hyperparameters
        self._sizes = sizes
        self._X = X
        self._Y = Y
        self.w_list = []
        self.b_list = []
        self._learning_rate = 1.0
        self._momentum = 0.0
        self._epoches = 10
        self._batchsize = 100
        input_size = X.shape[1]

        # initialization loop
        for size in self._sizes + [Y.shape[1]]:
            # Define upper limit for the uniform distribution range
            max_range = 4 * math.sqrt(6. / (input_size + size))

            # Initialize weights through a random uniform distribution
            self.w_list.append(
                np.random.uniform(-max_range, max_range, [input_size, size]).astype(np.float32))

            # Initialize bias as zeroes
            self.b_list.append(np.zeros([size], np.float32))
            input_size = size

    # load data from rbm
    def load_from_rbms(self, dbn_sizes, rbm_list):
        # Check if expected sizes are correct
        assert len(dbn_sizes) == len(self._sizes)

        for i in range(len(self._sizes)):
            # Check if for each RBN the expected sizes are correct
            assert dbn_sizes[i] == self._sizes[i]

        # If everything is correct, bring over the weights and biases
        for i in range(len(self._sizes)):
            self.w_list[i] = rbm_list[i].w
            self.b_list[i] = rbm_list[i].hb

    # Training method
    def train(self):
        # Create placeholders for input, weights, biases, output
        _a = [None] * (len(self._sizes) + 2)
        _w = [None] * (len(self._sizes) + 1)
        _b = [None] * (len(self._sizes) + 1)
        _a[0] = tf.placeholder("float", [None, self._X.shape[1]])
        y = tf.placeholder("float", [None, self._Y.shape[1]])

        # Define variables and activation functoin
        for i in range(len(self._sizes) + 1):
            _w[i] = tf.Variable(self.w_list[i])
            _b[i] = tf.Variable(self.b_list[i])
        for i in range(1, len(self._sizes) + 2):
            _a[i] = tf.nn.sigmoid(tf.matmul(_a[i - 1], _w[i - 1]) + _b[i - 1])

        # Define the cost function
        cost = tf.reduce_mean(tf.square(_a[-1] - y))

        # Define the training operation (Momentum Optimizer minimizing the Cost function)
        train_op = tf.train.MomentumOptimizer(
            self._learning_rate, self._momentum).minimize(cost)

        # Prediction operation
        predict_op = tf.argmax(_a[-1], 1)

        # Training Loop
        with tf.Session() as sess:
            # Initialize Variables
            sess.run(tf.global_variables_initializer())

            # For each epoch
            for i in range(self._epoches):

                # For each step
                for start, end in zip(
                        range(0, len(self._X), self._batchsize), range(self._batchsize, len(self._X), self._batchsize)):
                    # Run the training operation on the input data
                    sess.run(train_op, feed_dict={
                        _a[0]: self._X[start:end], y: self._Y[start:end]})

                for j in range(len(self._sizes) + 1):
                    # Retrieve weights and biases
                    self.w_list[j] = sess.run(_w[j])
                    self.b_list[j] = sess.run(_b[j])

                print("Accuracy rating for epoch " + str(i) + ": " + str(np.mean(np.argmax(self._Y, axis=1) == \
                                                                                 sess.run(predict_op, feed_dict={_a[0]: self._X, y: self._Y}))))


if __name__ == '__main__':
    # Loading in the mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

    trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\
        mnist.test.labels

    RBM_hidden_sizes = [500, 200, 50]  # create 4 layers of RBM with size 785-500-200-50
    # Since we are training, set input as training data
    inpX = trX
    # Create list to hold our RBMs
    rbm_list = []
    # Size of inputs is the number of inputs in the training set
    input_size = inpX.shape[1]

    # For each RBM we want to generate
    for i, size in enumerate(RBM_hidden_sizes):
        print('RBM: ', i, ' ', input_size, '->', size)
        rbm_list.append(RBM(input_size, size))
        input_size = size

    # For each RBM in our list
    for rbm in rbm_list:
        print('New RBM:')
        # Train a new one
        rbm.train(inpX)
        # Return the output layer
        inpX = rbm.rbm_outpt(inpX)

    nNet = NN(RBM_hidden_sizes, trX, trY)
    nNet.load_from_rbms(RBM_hidden_sizes, rbm_list)
    nNet.train()

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 深度置信网络
    • 1. 加载必要的深度置信网络库
      • 2. 构建RBM层
        • 3. 导入MNIST数据
          • 4. 建立DBN
            • 5.训练RBM
              • 6. 神经网络
                • 7. 运行
                • 完整代码
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档