前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >分页场景(limit, offset)为什么会慢?

分页场景(limit, offset)为什么会慢?

作者头像
程序猿DD
发布2021-04-20 14:47:13
1.2K0
发布2021-04-20 14:47:13
举报
文章被收录于专栏:程序猿DD

来源 | https://juejin.cn/post/6844903939247177741

从一个问题说起

五年前发现分页场景下,mysql请求速度非常慢。数据量只有10w的情况下,select xx from 单机大概2,3秒。我就问我导师为什么,他反问“索引场景,mysql中获得第n大的数,时间复杂度是多少?”

答案的追寻

确认场景

假设status上面有索引。select * from table where status = xx limit 10 offset 10000。会非常慢。数据量不大的情况就有几秒延迟。

小白作答

瞎猜了个log(N),心想找一个节点不就是log(N)。自然而然,导师让我自己去研究。

这一阶段,用了10分钟。

继续解答

仔细分析一下,会发现通过索引去找很别扭。因为你不知道前100个数在左子树和右子数的分布情况,所以其是无法利用二叉树的查找特性。通过学习,了解到mysql的索引是b+树。

看了这个图,就豁然开朗了。可以直接通过叶子节点组成的链表,以o(n)的复杂度找到第100大的树。但是即使是o(n),也不至于慢得令人发指,是否还有原因。

这一阶段,主要是通过网上查资料,断断续续用了10天。

系统学习

这里推荐两本书,一本《MySQL技术内幕 InnoDB存储引擎》,通过他可以对InnoDB的实现机制,如mvcc,索引实现,文件存储会有更深理解。

第二本是《高性能MySQL》,这本书从着手使用层面,但讲得比较深入,而且提到了很多设计的思路。

两本书相结合,反复领会,mysql就勉强能登堂入室了。

这里有两个关键概念:

  • 聚簇索引:包含主键索引和对应的实际数据,索引的叶子节点就是数据节点
  • 辅助索引:可以理解为二级节点,其叶子节点还是索引节点,包含了主键id。

即使前10000个会扔掉,mysql也会通过二级索引上的主键id,去聚簇索引上查一遍数据,这可是10000次随机io,自然慢成哈士奇。这里可能会提出疑问,为什么会有这种行为,这是和mysql的分层有关系,limit offset 只能作用于引擎层返回的结果集。换句话说,引擎层也很无辜,他并不知道这10000个是要扔掉的。以下是mysql分层示意图,可以看到,引擎层和server层,实际是分开的。

直到此时,大概明白了慢的原因。这一阶段,用了一年。

触类旁通

此时工作已经3年了,也开始看一些源码。在看完etcd之后,看了些tidb的源码。无论哪种数据库,其实一条语句的查询,是由逻辑算子组成。

逻辑算子介绍 在写具体的优化规则之前,先简单介绍查询计划里面的一些逻辑算子。

  • DataSource 这个就是数据源,也就是表,select * from t 里面的 t。
  • Selection 选择,例如 select xxx from t where xx = 5 里面的 where 过滤条件。
  • Projection 投影, select c from t 里面的取 c 列是投影操作。
  • Join 连接, select xx from t1, t2 where t1.c = t2.c 就是把 t1 t2 两个表做 Join。

选择,投影,连接(简称 SPJ) 是最基本的算子。其中 Join 有内连接,左外右外连接等多种连接方式。

select b from t1, t2 where t1.c = t2.c and t1.a > 5 变成逻辑查询计划之后,t1 t2 对应的 DataSource,负责将数据捞上来。上面接个 Join 算子,将两个表的结果按 t1.c = t2.c连接,再按 t1.a > 5 做一个 Selection 过滤,最后将 b 列投影。下图是未经优化的表示:

所以说不是mysql不想把limit, offset传递给引擎层,而是因为划分了逻辑算子,所以导致无法直到具体算子包含了多少符合条件的数据。

怎么解决

《高性能MySQL》提到了两种方案

方案一

根据业务实际需求,看能否替换为下一页,上一页的功能,特别在ios, android端,以前那种完全的分页是不常见的。这里是说,把limit, offset,替换为>辅助索引(即搜索条件)id的方式。该id再调用时,需要返回给前端。

方案二

正面刚。这里介绍一个概念:索引覆盖:当辅助索引查询的数据,只有id和辅助索引本身,那么就不必再去查聚簇索引。

思路如下:`select xxx,xxx from in (select id from table where second_index = xxx limit 10 offset 10000)`` 这句话是说,先从条件查询中,查找数据对应的数据库唯一id值,因为主键在辅助索引上就有,所以不用回归到聚簇索引的磁盘去拉取。再通过这些已经被limit出来的10个主键id,去查询聚簇索引。这样只会十次随机io。在业务确实需要用分页的情况下,使用该方案可以大幅度提高性能。通常能满足性能要求。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-04-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 程序猿DD 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 从一个问题说起
  • 答案的追寻
    • 确认场景
      • 小白作答
        • 继续解答
          • 系统学习
          • 触类旁通
          • 怎么解决
            • 方案一
              • 方案二
              相关产品与服务
              云数据库 SQL Server
              腾讯云数据库 SQL Server (TencentDB for SQL Server)是业界最常用的商用数据库之一,对基于 Windows 架构的应用程序具有完美的支持。TencentDB for SQL Server 拥有微软正版授权,可持续为用户提供最新的功能,避免未授权使用软件的风险。具有即开即用、稳定可靠、安全运行、弹性扩缩等特点。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档