前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >快速了解WDM波分复用器的相关术语

快速了解WDM波分复用器的相关术语

原创
作者头像
亿源通科技HYC
修改2021-04-28 17:59:27
1K0
修改2021-04-28 17:59:27
举报
文章被收录于专栏:亿源通科技HYC亿源通科技HYC

快速导读:

常用的WDM波分复用技术:介质薄膜滤波器TFF(Thin Film Filter)、阵列波导光栅AWG

WDM器件结构:C-lens和G-lens

光纤准直器(fiber collimator)

WDM器件参数:中心波長、通道数、通道间隔、插入损耗、回波损耗、方向性、偏振相关损耗、温度相关损耗

WDM设备上的端口类型:通道端口、线路端口、扩容/升级端口

波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

常用的WDM波分复用技术

WDM传输的基本元件是光学滤波器,可通过光纤熔融拉锥(FBT)、薄膜滤光片(TFF)、阵列波导光栅(AWG)和光学梳状滤波器等技术实现。TFF和AWG是最常用的两种WDM技术。

介质薄膜滤波器TFF(Thin Film Filter)

薄膜滤波器(TFF)技术是在波分复用商用以来最早得到应用的波分复用技术。与其他技术相比,薄膜滤波器的主要优点是它在小尺寸设备中应用时有极高的准确性。

紧凑型WDM模块结构
紧凑型WDM模块结构

TFF技术核心的是TFF滤光片,下面三端口WDM器件的结构可以清楚的看出TFF滤光片如何应用在WDM器件中。基于TFF的三端口WDM器件结构包括一个双光纤准直器、一个单光纤准直器和一个TFF滤光片,TFF滤光片粘贴在双光纤准直器的准直透镜的端面上。

基于TFF的三端口WDM器件结构
基于TFF的三端口WDM器件结构

为了将所有波长解复用,需要将n个三端口器件串联起来,组成WDM模块,如下图所示,其中每个三端口器件中的TFF滤光片,其透射波长不同。模块中的不同波长经过不同数量的三端口WDM器件,因此产生不同的插入损耗。随着端口数增加,损耗均匀性劣化。

 基于三端口WDM器件的WDM模块结构
基于三端口WDM器件的WDM模块结构

随着DWDM系统扩展到超过40个或48个信道,需要更大端口数的复用/解复用器。DWDM系统中最早采用的波分复用/解复用模块是基于介质膜滤光片TFF的。但串联结构的WDM模块,信道间隔每压窄一般,就要多镀上百层薄膜来分离和隔离各个波长,容易造成局部薄膜厚度与密度波动产生的缺陷增加,成品率下降,且会在后面端口累积太多功率损耗。基于TFF技术的DWDM模块,其信道数通常不超过16。阵列波导光栅AWG就是采用并行结构,一次性可实现对数十个波长进行复用/解复用操作。

阵列波导光栅AWG

典型的AWG结构如图所示,它包括一个输入波导、一个输入星形耦合器(图中自由传输区域FPR)、一组阵列波导、一个输出星形耦合器和数十根输出波导。DWDM信号从输入波导进入输入星形耦合器,经自由传输之后,被分配到阵列波导之中。这个分配过程是波长无关的,所有波长被无差别的分配到阵列波导之中。阵列波导对多光束产生相位差,各光束的相位成等差级数,这与传统光栅中的情况类似。不同波长被色散展开,并聚焦在输出星形耦合器中的不同位置。不同波长被不同的波导接收,从而实现对DWDM信号的并行解复用。

AWG优于TFF的主要优势在于其成本不依赖于波长计数,因此对于高通道数应用而言,它们具有极高的成本效益。AWG的另一个优点是可以灵活选择通道号和间距。

典型AWG结构
典型AWG结构

WDM器件结构

C-lens和G-lens

WDM器件的结构如下图,主要有玻璃管Glass tube、透镜Lens、滤波片Filter组成。其中透镜分为C-lens球面透镜(conventional lens)、G-lens自聚焦透镜(Gradient-index,GRIN)。C-Lens的结构是一面为平面,另外一面为球面的折射率均匀的玻璃柱体。G-lens的结构是折射率随直径变化的圆柱形玻璃棒。从input端的输入的光纤头发出来的光是发散的,透镜的使用就是将光聚焦和成像。两个透镜的作用是不同的,第一个透镜将发散的光线平行,第二个透镜将平行的光线汇聚。

WDM器件结构
WDM器件结构

光纤准直器(fiber collimator)

将C-透镜装在光纤头的前面,外面用玻璃或金属套管封装,就做成了一个C-透镜准直器。光纤准直器由尾纤与透镜精确定位而成,利用透镜( C-Lens或者G-Lens)的汇聚原理使原本发散的光聚成一束光斑较大的平行光束,从而达到准直(平行)效果。一般G-透镜准直器的成本要比C-透镜准直器高,所以我们大多使用C-透镜准直器。

WDM器件参数

中心波長(Center Wavelength)

ITU中心波长:ITU国际电信联盟规定的各通道标准中心波长。

通道数、通道间隔(Channel Spacing)

通道数指波分复用/解复用器可以合成或分离的信道的数量,这个数字可以从4到160不等,通过增加更多的频道来增强设计, 常见的信道数有4、8、16、32、40、48等。 通道间隔(channel spacing)是指两个相邻信道的标称载频的差值,可以用来防止信道间干扰。按ITU-T G.692的建议,间隔小于200GHz(1.6nm)的有100GHz(0.8nm)、50GHz(0.4nm)和25GHz等,目前优先选用的是100GHz和50GHz信道间隔。

通道带宽和通道间隔
通道带宽和通道间隔

插入损耗(Insertion Loss, IL)

插入损耗是光传输系统中波分复用器(WDM)插入引起的衰减。 它是以工作窗口的两个典型波长1310nm和1550nm来定义的。对于两个光通路端口,插入损耗定义为输出端口的光功率与输入端光功率之比,以dB为单位。定义为:IL=-10log(Po/Pi)

Pi—→输入到输入端口的光功率, 单位为mw;

Po—→从输出端口接收到的光功率,单位为mw。

透射插损(Pass , ILP)

光信号在通过器件时,透射光线的损耗。

反射插损(Reflect , ILR)

光信号在通过器件时,反射光线的损耗。

以上指标的数值越小越好。数值越小,表示光信号经过器件时所损耗的能量越小,越稳定。

回波损耗(Return Loss , RL)

入射到器件的光信号中,由于散射等原因导致有一小部分的光信号沿原路返回。 回损就是用来描述这种返回光信号的强度。如果这种往回传输的光信号太大可能会影响光源的正常工作,所以一般要求返回的光信号越小越好。指标的数值越大,表示返回的光信号越小。

方向性(Direction , DIR)

波长在透射带宽内的信号光从器件的透射端口入射,在器件的反射端口检测到的信号光的损耗即为方向性。原理与回损类似,数值越大,表示反方向传输的光信号越小,系统越稳定。

WDM方向性
WDM方向性

偏振相关损耗(Polarization , PDL)

由不同偏振态而引起器件插损变化的变化量称为偏振相关损耗。 偏振相关损耗PDL是在固定温度、波长及同Band下,不同极化态所造成的最大与最小Loss之间距离,即所有输入偏振状态下插入损耗的最大偏差。

温度相关损耗(Temperature , TDL)

由不同温度而引起器件插损变化的变化量称为温度相关损耗。

偏振相关损耗(PDL): WDM滤波器显示的损耗取决于光的光学偏振。PDL是在所有偏振态下最大插入损耗的最大差异。

其他相关术语

带宽(Passband)

带宽也叫通带宽度,生产厂商常给出通道传输最大值下降1dB、3dB和20dB处的通带宽度。带宽值不仅取决于信道的间隔,还取决于通带本身的线型。

加/减:加/减术语可能是指单波长滤波器或多通道WDM产品。对于滤光片,这是描述滤光片双向特性的另一种方式,其中特定的通道波长可以像多路传输一样被添加;或按解复用方式删除。

水峰

水峰是指OH-离子引起的损耗峰。现在,水峰及其水峰值上下的衰减可以超过2dB/km。

通带

通带是指能够通过滤波器的频率或波长范围,它是WDM滤波器的参数之一。事实上,通带是以中心波长为中心分布的一定波长范围,例如,CWDM滤波器的典型通带在中心波长±6.5nm的范围内。因此,一个波长为1551nm的光可以在没有额外信道损耗的情况下,在1544.5nm到1557.5nm的范围内传输。

WDM设备上的端口类型

WDM-分波
WDM-分波
WDM-合波
WDM-合波

通道端口

WDM设备通常具有几个不同波长的通道端口,每个端口均是一个特定波长。CWDM有18个波长,从1270nm到1610nm,因此有2~18个通道端口数。DWDM波长间隔密集,可容纳的波长更多,通道端口数可至96个。

线路端口

COM端——输入端,EXT端——反射端

扩容/升级端口

扩容/升级端口旨在为WDM解决方案增加额外的波长。它们对于将旧设备合并到WDM网络中非常有用。CWDM复用器/解复用器上的扩容端口或升级端口是用来增加、终止或通过新增信道,这些新增信道能串联两个CWDM复用器/解复用器,从而在光纤链路不变的情况下加倍增加了通道容量。

WDM - 扩容/升级端口
WDM - 扩容/升级端口

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档